A core-shell thermal barrier coating with strong resistance to molten silicate attack and fracture

Zichen Li, Gyaneshwara Brewster, Luis Isern, Christine Chalk, John Nicholls, Ping Xiao, Xun Zhang, Ying Chen

Research output: Contribution to journalArticlepeer-review

Abstract

We report a new thermal barrier coating (TBC) with strong resistance to calcia–magnesia–alumina–silicate (CMAS) attack and fracture. The design is based on a core-shell microstructure where each building block of the TBC comprises a tough yttria stabilised zirconia (YSZ) core and a CMAS-resistant shell. To demonstrate the feasibility of the design, we select alumina, an established CMAS-resistant ceramic, as the shell material and manufacture core-shell TBCs by first synthesising “YSZ core-alumina shell” powder using the sol-gel method and then thermally spraying the powder to form core-shell TBCs. Microstructural characterisations confirm that a core-shell coating structure is successfully manufactured. However, the melting and mixing of alumina and YSZ in thermal spray result in the formation of a microstructure composed of alumina-alloyed zirconia grains and intergranular alumina, with the overall alumina concentration increasing from the core to the shell. The CMAS penetration depth through the core-shell TBC is over an order of magnitude lower than that through the benchmark YSZ TBC, which is attributed to the multiscale protection of the core-shell microstructure against CMAS infiltration through cracks and grain boundaries. The core-shell TBC has a similar stiffness to the YSZ TBC but exhibits a lower erosion rate and higher fracture toughness, indicating enhanced fracture resistance without compromising strain tolerance. The improved fracture resistance of the core-shell TBC is attributed to its less defective intersplat structure and greater ferroelastic toughening strain. Compared to the YSZ TBC, the core-shell TBC shows lower stiffness and nearly identical fracture toughness after annealing.
Original languageEnglish
JournalActa Materialia
DOIs
Publication statusPublished - 15 Apr 2025

Fingerprint

Dive into the research topics of 'A core-shell thermal barrier coating with strong resistance to molten silicate attack and fracture'. Together they form a unique fingerprint.

Cite this