TY - JOUR
T1 - Assessing the environmental and economic sustainability of emerging tandem photovoltaic technologies in China
AU - Song, Tingfeng
AU - Jeswani, Harish K.
AU - Azapagic, Adisa
N1 - Publisher Copyright:
© 2024 The Author(s)
PY - 2024/10/15
Y1 - 2024/10/15
N2 - Tandem cell technologies with high conversion efficiency are considered promising options for a future photovoltaics (PV) market. Several studies have assessed the environmental and economic impacts of tandem technologies in European countries; however, such studies are not available for China, the largest PV market in the world. To fill this research gap, this paper presents a comprehensive life cycle environmental and economic assessment of solar electricity in China generated by two emerging PV tandem technologies: 4-terminal gallium arsenide/silicon heterojunction (GaAs/SHJ) and perovskite/silicon with tunnel oxide passivated contact (PSC/TOPCon). The study uses life cycle assessment (LCA) to evaluate the environmental impacts and life cycle costing (LCC) to assess the economic aspects of both technologies as such studies are not available in the literature. The LCA results reveal that electricity from the GaAs/SHJ tandem PV (based on reusing GaAs wafer five times) has 2–5 times higher impacts than electricity from PSC/TOPCon in most of the 18 impact categories considered, owing to high material and energy consumption for GaAs manufacturing. For example, the climate change potential of the GaAs/SHJ system (127 kg CO2 eq./MWh) is more than 3.5 times higher than that of PSC/TOPCon (33.5 kg CO2 eq./MWh). However, if the GaAs wafer were reused 100 times, then the climate change and all other impacts of GaAs/SHJ would become lower (1–26 %) than those of PSC/TOPCon, except for metal depletion which would still be significantly (126 %) higher. The life cycle costs of electricity generation by GaAs/SHJ are also much higher (135 $/MWh) than those of PSC/TOPCon (23.7 $/MWh), with arsine and gallium accounting for 68 % of the total cost in the GaAs/SHJ system. As these two technologies are currently at an early stage of development, further developments to reduce the material and energy consumption, as well as improve the efficiency and recyclability of both systems, are essential for future cost-effective and low-impact solar electricity generation in China.
AB - Tandem cell technologies with high conversion efficiency are considered promising options for a future photovoltaics (PV) market. Several studies have assessed the environmental and economic impacts of tandem technologies in European countries; however, such studies are not available for China, the largest PV market in the world. To fill this research gap, this paper presents a comprehensive life cycle environmental and economic assessment of solar electricity in China generated by two emerging PV tandem technologies: 4-terminal gallium arsenide/silicon heterojunction (GaAs/SHJ) and perovskite/silicon with tunnel oxide passivated contact (PSC/TOPCon). The study uses life cycle assessment (LCA) to evaluate the environmental impacts and life cycle costing (LCC) to assess the economic aspects of both technologies as such studies are not available in the literature. The LCA results reveal that electricity from the GaAs/SHJ tandem PV (based on reusing GaAs wafer five times) has 2–5 times higher impacts than electricity from PSC/TOPCon in most of the 18 impact categories considered, owing to high material and energy consumption for GaAs manufacturing. For example, the climate change potential of the GaAs/SHJ system (127 kg CO2 eq./MWh) is more than 3.5 times higher than that of PSC/TOPCon (33.5 kg CO2 eq./MWh). However, if the GaAs wafer were reused 100 times, then the climate change and all other impacts of GaAs/SHJ would become lower (1–26 %) than those of PSC/TOPCon, except for metal depletion which would still be significantly (126 %) higher. The life cycle costs of electricity generation by GaAs/SHJ are also much higher (135 $/MWh) than those of PSC/TOPCon (23.7 $/MWh), with arsine and gallium accounting for 68 % of the total cost in the GaAs/SHJ system. As these two technologies are currently at an early stage of development, further developments to reduce the material and energy consumption, as well as improve the efficiency and recyclability of both systems, are essential for future cost-effective and low-impact solar electricity generation in China.
KW - Climate change
KW - Electricity generation
KW - Environmental impacts
KW - Life cycle assessment
KW - Life cycle costing
KW - Renewable energy
UR - https://www.scopus.com/pages/publications/85201422220
U2 - 10.1016/j.enconman.2024.118890
DO - 10.1016/j.enconman.2024.118890
M3 - Article
AN - SCOPUS:85201422220
SN - 0196-8904
VL - 318
JO - Energy Conversion and Management
JF - Energy Conversion and Management
M1 - 118890
ER -