TY - JOUR
T1 - Distinct microbiome profiles on vaginally inserted polypropylene midurethral mesh slings compared to vaginal, urinary, and skin microbiomes
AU - Abbas, Nazish
AU - Willmott, Thomas
AU - Campbell, Paul
AU - Singh, Gurdeep
AU - Basu, Maya
AU - Reid, Fiona
AU - Mcbain, Andrew
A2 - Elkins, Christopher A.
PY - 2025/6/23
Y1 - 2025/6/23
N2 - Midurethral slings are widely used in the treatment of stress urinary incontinence in women. However, little is known about the microbiomes that develop on these implants, their relationship to the urinary and vaginal microbiomes, or their potential role in mesh-related complications. In this study, we characterized the microbiomes of explanted midurethral slings and examined associations with clinical complications. Seventy-four women provided a total of 397 samples, including explanted mesh, urine, and swabs from the vagina and groin or suprapubic skin. Participants were categorized into clinical groups: chronic pain, vaginal mesh exposure, lower urinary tract perforation, or recurrent incontinence (control group). Samples underwent 16S rRNA gene sequencing. The mesh microbiome was dominated by Firmicutes, Proteobacteria, and Actinobacteria, with Enterococcus particularly abundant. Microbial diversity was significantly higher in mesh samples compared to vaginal and skin swabs, but not urine. The mesh microbiome was compositionally distinct from the urinary, vaginal, and skin microbiomes, potentially reflecting vaginal microbiome alterations due to urinary incontinence at the time of implantation. Differences in microbial diversity in mesh and skin samples among women with pain suggest a possible microbial contribution to mesh complications. These findings demonstrate the presence of distinct, site-specific microbial communities on explanted midurethral slings, with potential implications for understanding mesh-related complications.
AB - Midurethral slings are widely used in the treatment of stress urinary incontinence in women. However, little is known about the microbiomes that develop on these implants, their relationship to the urinary and vaginal microbiomes, or their potential role in mesh-related complications. In this study, we characterized the microbiomes of explanted midurethral slings and examined associations with clinical complications. Seventy-four women provided a total of 397 samples, including explanted mesh, urine, and swabs from the vagina and groin or suprapubic skin. Participants were categorized into clinical groups: chronic pain, vaginal mesh exposure, lower urinary tract perforation, or recurrent incontinence (control group). Samples underwent 16S rRNA gene sequencing. The mesh microbiome was dominated by Firmicutes, Proteobacteria, and Actinobacteria, with Enterococcus particularly abundant. Microbial diversity was significantly higher in mesh samples compared to vaginal and skin swabs, but not urine. The mesh microbiome was compositionally distinct from the urinary, vaginal, and skin microbiomes, potentially reflecting vaginal microbiome alterations due to urinary incontinence at the time of implantation. Differences in microbial diversity in mesh and skin samples among women with pain suggest a possible microbial contribution to mesh complications. These findings demonstrate the presence of distinct, site-specific microbial communities on explanted midurethral slings, with potential implications for understanding mesh-related complications.
KW - Mesh
KW - microbiome
KW - incontinence
KW - midurethral slings
U2 - 10.1128/aem.02463-24
DO - 10.1128/aem.02463-24
M3 - Article
SN - 0099-2240
JO - Applied and environmental microbiology
JF - Applied and environmental microbiology
ER -