Abstract
The isolation of formally two-coordinate lanthanide (Ln) complexes is synthetically challenging, due to predominantly ionic Ln bonding regimes favoring high coordination numbers. In 2015, it was predicted that a near-linear dysprosium bis(amide) cation [Dy{N(Si iPr 3) 2} 2] + could provide a single-molecule magnet (SMM) with an energy barrier to magnetic reversal (U eff) of up to 2600 K, a 3-fold increase of the record U eff for a Dy SMM at the time; this work showed a potential route to SMMs that can provide high-density data storage at higher temperatures. However, synthetic routes to a Dy complex containing only two monodentate ligands have not previously been realized. Here, we report the synthesis of the target bent dysprosium bis(amide) complex, [Dy{N(Si iPr 3) 2} 2][Al{OC(CF 3) 3} 4] (1-Dy), together with the diamagnetic yttrium analogue. We find U eff = 950 ± 30 K for 1-Dy, which is much lower than the predicted values for idealized linear two-coordinate Dy(III) cations. Ab initio calculations of the static electronic structure disagree with the experimentally determined height of the U eff barrier, thus magnetic relaxation is faster than expected based on magnetic anisotropy alone. We propose that this is due to enhanced spin-phonon coupling arising from the flexibility of the Dy coordination sphere, in accord with ligand vibrations being of equal importance to magnetic anisotropy in the design of high-temperature SMMs.
Original language | English |
---|---|
Pages (from-to) | 3331-3342 |
Number of pages | 12 |
Journal | Journal of the American Chemical Society |
Volume | 146 |
Issue number | 5 |
Early online date | 29 Jan 2024 |
DOIs | |
Publication status | Published - 7 Feb 2024 |
Fingerprint
Dive into the research topics of 'Isolation of a bent dysprosium bis(amide) single-molecule magnet'. Together they form a unique fingerprint.Equipment
-
EPSRC National Research Facility for Electron Paramagnetic Resonance
Collison, D. (Academic lead), Mcinnes, E. (Academic lead), Tuna, F. (Academic lead), Bowen, A. (Academic lead), Shanmugam, M. (Senior Technical Specialist), Brookfield, A. (Technical Specialist), Fleming, E. (Other) & Cliff, M. (Core Facility Lead)
FSE ResearchFacility/equipment: Facility