TY - JOUR
T1 - What is the nature of the uranium(iii)-arene bond?
AU - Chowdhury, Sabyasachi Roy
AU - Goodwin, Conrad
AU - Vlaisavljevich, Bess
N1 - Publisher Copyright:
© 2024 The Royal Society of Chemistry
PY - 2023/12/14
Y1 - 2023/12/14
N2 - Complexes of the form [U(η6-arene)(BH4)3] where arene = C6H6; C6H5Me; C6H3-1,3,5-R3 (R = Et, iPr, tBu, Ph); C6Me6; and triphenylene (C6H4)3 were investigated towards an understanding of the nature of the uranium-arene interaction. Density functional theory (DFT) shows the interaction energy reflects the interplay between higher energy electron rich π-systems which drive electrostatic contributions, and lower energy electron poor π-systems which give rise to larger orbital contributions. The interaction is weak in all cases, which is consistent with the picture that emerges from a topological analysis of the electron density where metrics indicative of covalency show limited dependence on the nature of the ligand - the interaction is predominantly electrostatic in nature. Complete active space natural orbital analyses reveal low occupancy U-arene π-bonding interactions dominate in all cases, while δ-bonding interactions are only found with high-symmetry and electron-rich C6Me6. Finally, both DFT and multireference calculations on a reduced, formally U(ii), congener, [U(C6Me6)(BH4)3]−, suggests the electronic structure (S = 1 or 2), and hence metal oxidation state, of such a species cannot be deduced from structural features such as arene distortion alone. We show that arene geometry strongly depends on the spin-state of the complex, but that in both spin-states the complex is best described as U(iii) with an arene-centred radical.
AB - Complexes of the form [U(η6-arene)(BH4)3] where arene = C6H6; C6H5Me; C6H3-1,3,5-R3 (R = Et, iPr, tBu, Ph); C6Me6; and triphenylene (C6H4)3 were investigated towards an understanding of the nature of the uranium-arene interaction. Density functional theory (DFT) shows the interaction energy reflects the interplay between higher energy electron rich π-systems which drive electrostatic contributions, and lower energy electron poor π-systems which give rise to larger orbital contributions. The interaction is weak in all cases, which is consistent with the picture that emerges from a topological analysis of the electron density where metrics indicative of covalency show limited dependence on the nature of the ligand - the interaction is predominantly electrostatic in nature. Complete active space natural orbital analyses reveal low occupancy U-arene π-bonding interactions dominate in all cases, while δ-bonding interactions are only found with high-symmetry and electron-rich C6Me6. Finally, both DFT and multireference calculations on a reduced, formally U(ii), congener, [U(C6Me6)(BH4)3]−, suggests the electronic structure (S = 1 or 2), and hence metal oxidation state, of such a species cannot be deduced from structural features such as arene distortion alone. We show that arene geometry strongly depends on the spin-state of the complex, but that in both spin-states the complex is best described as U(iii) with an arene-centred radical.
UR - https://www.scopus.com/pages/publications/85182156810
U2 - 10.1039/d3sc04715f
DO - 10.1039/d3sc04715f
M3 - Article
AN - SCOPUS:85182156810
SN - 2041-6520
VL - 15
SP - 1810
EP - 1819
JO - Chemical Science
JF - Chemical Science
IS - 5
ER -