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Abstract
In this paper we explore orthogonal systems in L2(R) which give rise to a skew-
Hermitian, tridiagonal differentiationmatrix. Surprisingly, allowing the differentiation
matrix to be complex leads to a particular family of rational orthogonal functions
with favourable properties: they form an orthonormal basis for L2(R), have a simple
explicit formulae as rational functions, can be manipulated easily and the expansion
coefficients are equal to classical Fourier coefficients of a modified function, hence
can be calculated rapidly. We show that this family of functions is essentially the only
orthonormal basis possessing a differentiation matrix of the above form and whose
coefficients are equal to classical Fourier coefficients of a modified function though
a monotone, differentiable change of variables. Examples of other orthogonal bases
with skew-Hermitian, tridiagonal differentiation matrices are discussed as well.

Keywords Orthogonal systems · Orthogonal rational functions · Spectral methods ·
Fast Fourier transform · Malmquist–Takenaka system

Mathematics Subject Classification Primary: 41A20 · Secondary: 42A16 · 65M70 ·
65T50

Communicated by Hans G. Feichtinger.

B Marcus Webb
marcus.webb@manchester.ac.uk

1 Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences,
University of Cambridge, Wilberforce Rd, Cambridge CB4 1LE, UK

2 Department of Mathematics, University of Manchester, Alan Turing Building, Manchester M13 9PL,
UK

http://crossmark.crossref.org/dialog/?doi=10.1007/s00041-019-09718-5&domain=pdf


19 Page 2 of 28 Journal of Fourier Analysis and Applications (2020) 26 :19

1 Introduction

The motivation for this paper is the numerical solution of time-dependent partial
differential equations on the real line. It continues an ongoing project of the present
authors, begun in [13], which studied orthonormal systems � = {ϕn}n∈Z in L2(R)

which satisfy the differential-difference relation,

ϕ′
n(x) = −bn−1ϕn−1(x) + bnϕn+1(x), n ∈ Z+, (1)

for some real, nonzero numbers {bn}n∈Z where b−1 = 0. In other words, the differ-
entiation matrix of � is skew-symmetric, tridiagonal and irreducible. The virtues of
skew symmetry in this context are elaborated in [8,11] and [13]—essentially, once �

has this feature, spectral methods based upon it typically allow for a simple proof of
numerical stability and for the conservation of energy whenever the latter is warranted
by the underlying PDE. The importance of tridiagonality is clear, since tridiagonal
matrices lend themselves to simpler and cheaper numerical algebra.

In this paperwegeneralise (1), allowing for a skew-Hermitiandifferentiationmatrix.
In other words, we consider systems � of complex-valued functions such that

ϕ′
n(x) = −bn−1ϕn−1(x) + icnϕn(x) + bnϕn+1(x), (2)

where {bn}n∈Z+ ⊂ C and {cn}n∈Z+ ⊂ R.
While the substantive theory underlying the characterisation of orthonormal sys-

tems in L2(R) with skew-Hermitian, tridiagonal, irreducible differentiation matrices
is a fairly straightforward extension of [13], its ramifications are new and, we believe,
important. In Sect. 2 we establish this theory, characterising� as Fourier transforms of
weighted orthogonal polynomials with respect to some absolutely-continuous Borel
measure dμ. This connection is reminiscent of [13] but an important difference is that
dμ need not be symmetric with respect to the origin: this affords us an opportunity to
consider substantially greater set of candidate measures.

An important issue is that, while the correspondence with Borel measures guaran-
tees orthogonality and the satisfaction of (2), it does not guarantee completeness. In
general, once dμ is determinate and supported by the interval (a, b), completeness is
assured in the Paley–Wiener space PW(a,b)(R).

So far, the material of this paper represents a fairly obvious generalisation of [13].
Furthermore, the operation of differentiation for functions on the real line is defined
without venturing into the complex plane. Indeed, it is legitimate to challenge why
we should allow our differentiation matrices to contain complex numbers. After all,
if skew-Hermitian framework is so similar to the (simpler!) skew-symmetric one,
why bother? The only possible justification is were (2) to confer an advantage (in
particular, from the standpoint of computational mathematics) in comparison with
(1). This challenge is answered in Sect. 3, where we consider sets � associated with
generalised Laguerre polynomials, where (a, b) = (0,∞). We show that a simple
tweak to our setting assures the completeness of these Fourier–Laguerre functions,
which need be indexed over Z, rather than Z+.
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The Fourier–Laguerre functions in their full generality, while expressible in terms
of the Szegő—Askey polynomials on the unit circle, are fairly complicated. However,
in the case of the simple Laguerre measure dμ(x) = χ(0,∞)(x)e−xdx they reduce to
the Malmquist–Takenaka (MT) system

ϕn(x) =
√

2

π
in

(1 + 2ix)n

(1 − 2ix)n+1 , n ∈ Z. (3)

The MT system has been discovered independently by [14] and [19] and investigated
by many mathematicians, in different contexts: approximation theory [2,3,9,20], har-
monic analysis [5,16], signal processing [22] and spectral methods [4]. Some of these
references are aware of the original work of Malmquist and Takenaka, while others
reinvent the construct.

A remarkable property of theMTsystem (3) is that the computation of the expansion
coefficients

f̂n =
∫ ∞

−∞
f (x)ϕn(x)dx, n ∈ Z,

can be reduced, by an easy change of variables, to a standard Fourier integral. Therefore
the evaluation of f̂−N , . . . , f̂N−1 can be accomplished with the Fast Fourier transform
(FFT) in O (

N log2 N
)
operations: this has been already recognised, e.g. in [20]. In

Sect. 4 we characterise all systems �, indexed over Z, which tick all of the following
boxes:

• They are orthonormal and complete in L2(R),
• They have a skew-Hermitian, tridiagonal differentiation matrix, and
• Their expansion coefficients f̂−N , . . . , f̂N−1 can be approximated with a dis-
crete Fourier transform by a single change of variables, and hence computed in
O (

N log2 N
)
operations with fast Fourier transform.

Adding rigorous but reasonable assumptions to these requirements, we prove that,
modulo a simple generalisation, the MT system is the only system which bears all
three.

We wish to draw attention to [12], a companion paper to this one. While operating
there within the original framework of [13]—skew-symmetry rather than skew-
Hermicity— we seek therein to characterise orthonormal systems in L2(R) whose
first N coefficients can be computed inO (

N log2 N
)
operations by fast expansion in

orthogonal polynomials. We identify there a number of such systems, all of which can
be computed by a mixture of fast cosine and fast sine transforms. Such systems are
direct competitors to the Malmquist–Takenaka system, discussed in this paper.
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2 Orthogonal Systems with a skew-Hermitian DifferentiationMatrix

2.1 Skew-Hermite DifferentiationMatrices and Fourier Transforms

The subject matter of this section is the determination of verifiable conditions equiva-
lent to the existence of a skew-Hermitian, tridiagonal, irreducible differentiationmatrix
(2) for a system � = {ϕn}n∈Z+ which is orthonormal in L2(R).

Theorem 2.1 (Fourier Characterisation for �) The set � = {ϕn}n∈Z+ ⊂ L2(R) has a
skew-Hermitian, tridiagonal, irreducible differentiation matrix (2) if and only if

ϕn(x) = eiθn

√
2π

∫ ∞

−∞
eixξ pn(ξ)g(ξ) dξ, (4)

where P = {pn}n∈Z+ is an orthonormal polynomial system on the real line with
respect to a non-atomic probability measure dμ with all finite moments,1 g is a square-
integrable function which decays superalgebraically fast as |ξ | → ∞, and {θn}n∈Z+
is a sequence of numbers in [0, 2π). Furthermore, P, g, and {θn}n∈Z+ are uniquely
determined by ϕ0, {cn}n∈Z+ , and {bn}n∈Z+ .2

Remark 2.2 This theorem is a straightforward generalisation of [13, Thm. 6], which
shows the same result but for real, irreducible skew-symmetric differentiationmatrices.
The difference is that (2) is replaced by (1), dμmust be even, g must have even real part
and odd imaginary part, and θn is chosen so that eiθn = (−i)n .Wewill prove sufficiency
because it is elementary but enlightening, and leave necessity and uniqueness for the
reader to prove by modifying the proof in [13]. That part of the proof depends on
Favard’s theorem and properties of the Fourier transform, and we wish to avoid it for
the sake of brevity.

Proof Suppose that ϕn are given by the Eq. (4). Then by [7, Thm. 1.29] there exist
real numbers {δn}n∈Z+ and positive numbers {βn}n∈Z+ such that

ξ pn(ξ) = βn−1 pn−1(ξ) + δn pn(ξ) + βn pn+1(ξ), n ∈ Z+, (5)

where β−1 = 0 by convention.3 Differentiating under the integral sign and using the
above three-term recurrence, we obtain

ϕ′
n(x) = iei(θn−θn−1)βn−1ϕn−1(x) + iδnϕn(x) + iei(θn−θn+1)βnϕn+1(x).

Set cn = δn and bn = iei(θn−θn+1)βn for n ∈ Z+. Then cn ∈ R and −bn−1 =
−(−i)ei(θn−θn−1)βn−1 = iei(θn−θn−1)βn−1, so that � satisfies Eq. (2). �	
1 By this, we mean that dμ is Borel measure on the real line with total mass equal to 1 and with an
uncountable number of points of increase (for example all of R or the interval [−1, 1]).
2 We assume by convention that the leading coefficients of the elements of P are positive.
3 This form (5) of the three-term recurrence relation for P ensures orthonormality of the underlying
orthogonal polynomials.
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Theorems 2.3 and 2.4 are proved in [13] for the real case, as in Eq. (1). The proofs
require minimal modification for them to apply to the complex case, as in Eq. (2).

Theorem 2.3 (Orthogonal systems) Let � = {ϕn}n∈Z+ satisfy the requirements of
Theorem 2.1. Then � is orthogonal in L2(R) if and only if P is orthogonal with
respect to the measure |g(ξ)|2dξ . Furthermore, whenever � is orthogonal, the func-
tions ϕn/‖g‖2 are orthonormal.

Theorem 2.4 (Orthogonal Bases for a Paley–Wiener Space) Let � = {ϕn}n∈Z+ satisfy
the requirements of Theorem 2.3with a measure dμ such that polynomials are dense in
L2(R; dμ). Then � forms an orthogonal basis for the Paley–Wiener space PW
(R),
where 
 is the support of dμ.

The key corollary of Theorem 2.4 is that for a basis � satisfying the requirements
of Theorem 2.3 to be complete in L2(R), it is necessary that the polynomial basis P
is orthogonal with respect to a measure which is supported on the whole real line.

2.2 Symmetries and the Canonical Form

Let � = {ϕn}n∈Z+ have a tridiagonal skew-Hermitian differentiation matrix as in Eq.
(2). Then the system �̃ = {ϕ̃n}n∈Z+ defined by

ϕ̃n(x) = Aei(ωx+κn)ϕn(Bx + C), (6)

where ω, A, B, C, κn ∈ R and A, B �= 0, also satisfies Eq. (2). We can show this
directly as follows.

ϕ̃′
n(x) = ABei(ωx+κn)ϕ′

n(Bx + C) + Aiωei(ωx+κn)ϕn(Bx + C)

= ABei(ωx+κn)[−bn−1ϕn−1(Bx + C) + icnϕn(Bx + C) + bnϕn+1(Bx + C)]
+iωAei(ωx+κn)ϕn(Bx + C)

= −Bei(κn−κn−1)bn−1ϕ̃n−1(x) + i(Bcn + ω)ϕ̃n(x) + Bei(κn−κn+1)bn ϕ̃n+1(x)

= −b
◦
n−1ϕ̃n−1(x) + ic◦

nϕ̃n(x) + b◦
n ϕ̃n+1(x),

where b◦
n = Bei(κn−κn+1)bn and c◦

n = Bcn + ω.
The parameters ω, A, B, C, κ0, κ1, κ2, . . . encode continuous symmetries in the

space of systems with a tridiagonal skew-Hermitian differentiation matrix. Note that
these symmetries also preserve orthogonality (but not necessarily orthonormality).

If the differentiation matrix is irreducible then these symmetries permit a unique
choice of κ0, κ1, . . . ensuring that bn is a positive real number for each n ∈ Z+.
This corresponds to modifying the choice of θn in Theorem 2.1 so that eiθn = in . It
is therefore possible for any given g and P to have a canonical choice of �, which
satisfies bn > 0, by taking

ϕn(x) = in√
2π

∫ ∞

−∞
eixξ pn(ξ)g(ξ)dξ.
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We can also produce a unique canonical orthonormal system from an absolutely
continuous measure dμ(ξ) = w(ξ)dξ on the real line, where w(ξ) decays superalge-
braically fast as |ξ | → ∞. Specifically, the functions

ϕn(x) = in√
2π

∫ ∞

−∞
eixξ pn(ξ)|w(ξ)| 12 dξ (7)

form an orthonormal system in L2(R) with a tridiagonal, irreducible skew-Hermitian
differentiation matrix with a positive superdiagonal. The system is dense in L2(R) if
P is dense in L2(R, w(ξ)dξ).

2.3 Computing8

We proved in [13] that any system � of L2(R)∩C∞(R) functions that obey (1) obeys
the relation

ϕn(x) = 1

b0b1 · · · bn−1

�n/2�∑

=0

αm,
ϕ
(n−2
)
0 (x), n ∈ Z+, (8)

where

αn+1,0 = 1, αn+1,
 = b2n−1αn−1,
−1 + αn,
, 
 = 1 . . .

⌊
n + 1

2

⌋
.

Our setting lends itself to similar representation, which follows from (2) by induction.

Lemma 2.5 The functions � consistent with (2) satisfy the relation

ϕn(x) = 1

b0b1 . . . bn−1

n∑

=0

βn,
ϕ
(
)
0 (x), n ∈ Z+, (9)

where β0,0 = β1,1 = 1 , β1,0 = −ic0 and

βn+1,0 = b2n−1βn−1,0 − icnβn,0,

βn+1,
 = βn,
−1 + b2n−1βn−1,
 − icnβn,
, 
 = 1, . . . , n + 1

for n ∈ N.

Like (8), the formula (9) is often helpful in the calculation of ϕ1, ϕ2, . . . once ϕ0 is
known. The obvious idea is to compute explicitly the derivatives of ϕ0 and form their
linear combination (9), but equally useful is a generalisation of an approach originating
in [13]. Thus, Fourier-transforming (9),

ϕ̂n(ξ) = ϕ̂0(ξ)

b0b1 . . . bn−1

n∑

=0

βn,
(iξ)
.
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On the other hand, Fourier transforming (7), we have

ϕ̂n(ξ) = in|w(ξ)|1/2 pn(ξ).

Our first conclusion is that ϕ̂0(ξ) = |w(ξ)|1/2/p0. Moreover, comparing the two
displayed equations,

1

b0b1 · · · bn−1

n∑

=0

βn,
(iξ)
 = in

p0
pn(ξ). (10)

The polynomials pn are often known explicitly. In that case it is helpful to rewrite (9)
in a more explicit form.

Lemma 2.6 Suppose that pn(ξ) = ∑n

=0 pn,
ξ


, n ∈ Z+. Then

ϕn(x) = in

p0,0

n∑

=0

(−i)
 pn,
ϕ
(
)
0 (x), n ∈ Z+. (11)

Proof By (9), substituting the explicit form of pn in (10). �	

2.4 An Example

The next section is concerned with the substantive example of a system � with a
skew-Hermitian differentiation matrix that originates in the Fourier setting once we
use a Laguerre measure. What, though, about other examples? Once we turn our head
to generating explicit examples of orthonormal systems in the spirit of this paper and
of [13], we are faced with a problem: all steps in Sects. 2.1–3 must be generated
explicitly. Thus, we must choose an absolutely continuous measure for which the
recurrence coefficients in (5) are known explicitly, compute explicitly {pn}n∈Z+ and
either

• compute explicitly ϕ0(x) = (2π)−1/2 p0
∫ ∞
−∞ |w(ξ)|1/2eixξdξ and its derivatives,

subsequently forming (11) and manipulating it further into a user-friendly form,

or

• compute explicitly (7) for all n ∈ Z+.

Either course of action is restricted by the limitations on our knowledge of explicit
fomulæ of orthogonal polynomials for absolutely continuous measures (thereby
excluding, for example, Charlier and Lommel polynomials, as well as the Askey–
Wilson hierarchy). Thus Hermite polynomials and their generalisations [13], Jacobi
and Konoplev polynomials [13], Carlitz polynomials [12] and, in the next section,
Laguerre polynomials.

Herewith we present another example which, albeit of no apparent practical use, by
its very simplicity helps to illustrate our narrative. Let α ∈ R and consider dμ(ξ) =
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e−(ξ−α)2dξ , a shifted Hermite measure. The underlying orthonormal set consists of

pn(x) = 1√
2nn!√π

Hn(x − α), n ∈ Z+,

therefore

ξ pn(ξ) =
√

n

2
pn−1(ξ) + α pn(ξ) +

√
n + 1

2
pn+1(ξ)

– we deduce that bn = √
(n + 1)/2 and cn ≡ α in (2). Moreover,

ϕn(x) = in√
2π

1√
2nn!√π

∫ ∞

−∞
Hn(ξ − α)e−(ξ−α)2/2−ixξdξ = e−x2/2−iαx√

2nn!√π
Hn(x),

‘twisted’ Hermite functions. It is trivial to confirm that they satisfy (2) or derive them
directly from (11).

2.5 Connections to Chromatic Expansions

Theorem 1 characterises all systems � in L2(R) satisfying equation (2). These sys-
tems depend on a family of orthonormal polynomials on the real line with associated
measure dμ and a function g on the real line. Theorems 2 and 3 focussed on the
special case in which dμ(ξ) = |g(ξ)|2dξ . This special case yields all systems which
are orthonormal in the inner standard product, which turn out to be complete in a
Paley-Wiener space.

An anonymous referee has made the authors aware of a considerable amount of
work devoted to the special case in which dμ(ξ) = g(ξ)dξ , whose systems generate
so-called chromatic expansions [10,23–25]. These systems have some remarkable
properties for application to signal processingwhichwe summarise herewhilstmaking
connections to the present work.

Given a sequence of orthonormal polynomials {Pn}n∈Z+ with respect to a finite
Borel measure dμ on the real line, define the function

ψ(x) :=
∫ ∞

−∞
eixξ dμ(ξ), (12)

and the operators

Kn = Pn

(
i
d

dx

)
, (13)
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for all n ∈ Z+ acting on C∞(R). The chromatic expansion of a smooth function f is
the formal series

f (x) =
∞∑

n=0

Kn[ f ](0)Kn[ψ](x), (14)

which converges uniformly on the real line if, for example, μ is such thatψ is analytic
in a strip around the real axis, f is analytic in this strip too, and the sequence of
coefficients {Kn[ f ](0)}n∈Z+ is in 
2 [25].

The connection to the present work is as follows. For all n ∈ Z+, let ϕn = Kn[ψ]
be the elements of the system �. Then � is of the form described in Theorem 1 with
g(ξ)dξ = dμ(ξ).

This advantages for signal processing are twofold:

• The expansion coefficients are given explicitly and depend locally on the function
f centred around the point 0. The expansions can be made local to points other
than 0 as in [10].

• The functions � are bandlimited, with Fourier transforms supported precisely on
the support of μ.

While the basis � with ϕn = Kn[ψ] is not orthonormal in the standard inner
product on L2(R), under some mild assumptions on μ, it is possible to show that � is
orthonormal with respect to the inner product

〈 f , g〉K =
∞∑

n=0

Kn[ f ](0)Kn[g](0), (15)

and is complete in a space of analytic functions on the real line for which the induced
norm is finite [10].

3 The Fourier–Laguerre Basis

3.1 A General Expression

A Skew-Hermite setting allows an important generalisation of the narrative of [13],
namely toBorelmeasures in theFourier spacewhich are not symmetric. Themost obvi-
ous instance is the Laguerre measure dμ(ξ) = χ(0,∞)(ξ)ξαe−ξdξ , where α > −1.
The corresponding orthogonal polynomials are the (generalised) Laguerre polynomi-
als

L(α)
n (ξ) = (1 + α)n

n! 1F1

[−n;
1 + α; ξ

]
= (1 + α)n

n!
n∑


=0

(−1)

(

n




)
ξ


(1 + α)

, (16)

where (z)m = z(z+1) · · · (z+m−1) is thePochhammer symbol and 1F1 is a confluent
hypergeometric function [17, p. 200]. The Laguerre polynomials obey the recurrence
relation
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(n + 1)L(α)
n+1(ξ) = (2n + 1 + α − ξ)L(α)

n (ξ) − (n + α)L(α)
n−1(ξ).

First, however, we need to recast them in a form suitable to the analysis of Sect. 2—
specifically, we need to renormalise them so that they are orthonormal and so that the
coefficient of ξn in pn is positive. Since

‖L(α)
n ‖2 =

∫ ∞

0
ξα[L(α)

n (ξ)]2e−ξdξ = �(n + 1 + α)

n!
[17, p. 206] and the sign of ξn in (16) is (−1)n , we set

pn(ξ) = (−1)n

√
n!

�(n + 1 + α)
L(α)

n (ξ), n ∈ Z+.

We deduce after simple algebra that

bn = βn = √
(n + 1)(n + 1 + α), cn = δn = 2n + 1 + α

in (2) and (5). (bn = βn because the latter is real and positive.)
To compute � we note that, letting τ = ( 12 − ix)ξ , (7) yields

ϕ0(x) = 1√
2π�(1 + α)

∫ ∞

0
ξα/2e−ξ/2+iξ xdξ

= 1√
2π(1 + α)

2α/2+1

(1 − 2ix)α/2+1

∫ ∞

0
τα/2e−τdτ

= 1√
2π

�(1 + 1
2α)√

�(1 + α)

(
2

1 − 2ix

)1+α/2

.

It now follows by simple induction that4

ϕ
(
)
0 (x) = i
√

2π

�(
 + 1 + 1
2α)√

�(1 + α)

(
2

1 − 2ix

)
+1+α/2

, 
 ∈ Z+.

Moreover,

pn(ξ) = (−1)n

√
n!

�(n + 1 + α)
(1 + α)n

n∑

=0

(−1)
ξ



!(n − 
)!(1 + α)


=
√

n!�(n + 1 + α)

�(1 + α)

n∑

=0

(−1)n−
ξ



!(n − 
)!(1 + α)

,

4 Note that the bracketed superscripts (α) and (
) have different meanings. The former is the standard
notation for the parameter in the generalized Laguerre polynomial and the latter is the standard notation for
the 
th derivative.
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therefore

pn,
 =
√

n!�(n + 1 + α)

�(1 + α)

(−1)n−



!(n − 
)!(1 + α)

, 
 = 0, . . . , n

and substitution in (11) gives

ϕn(x) = (−i)n

√
2π

√
n!�(n + 1 + α)

�(1 + α)

(
2

1 − 2ix

)1+ α
2

n∑

=0

�(
 + 1 + 1
2α)


!(n − 
)!(1 + α)


(
2

1 − 2ix

)


= (−i)n

√
2π

√
�(n + 1 + α)

n!
�(1 + α

2 )

�(1 + α)

(
2

1 − 2ix

)1+ α
2

2F1

[−n, 1 + 1
2α;

1 + α;
2

1 − 2ix

]
.

The identity,

2F1

[−n, b;
c; z

]
= (c − b)n

(c)n
2F1

[−n, b;
b − c − n + 1;1 − z

]
,

[15, 15.8.7], implies that we have

ϕn(x) = (−i)n

√
2π

α2
α
2 �(n + α

2 )√
n!�(n + 1 + α)

(
1

1 − 2ix

)1+ α
2

2F1

[−n, 1 + 1
2α;

1 − 1
2α − n; − 1 + 2ix

1 − 2ix

]
.

It is now clear that ϕn is proportional to (1−2ix)−1−α/2 times a polynomial of degree
n in the expression (1 + 2ix)/(1 − 2ix) i.e.

ϕn(x) = (−i)n

√
2

π

(
1

1 − 2ix

)1+ α
2

�(α)
n

(
1 + 2ix

1 − 2ix

)
, (17)

where �
(α)
n is a polynomial of degree n. Using the substitution x = 1

2 tan
θ
2 for

θ ∈ (−π, π), which implies (1 + 2ix)/(1 − 2ix) = eiθ , the orthonormality of the
basis � can be seen to imply that {�(α)

n }n∈Z+ are in fact orthogonal polynomials on
the unit circle (OPUC) with respect to the weight

W (θ) = cosα
θ

2
.

To be clear, this means that for all n, m ∈ Z+,

1

2π

∫ π

−π

�
(α)
n (eiθ )�(α)

m (eiθ ) cosα
θ

2
dθ = δn,m .

These polynomials are related to the Szegő–Askey polynomials [15, 18.33.13],
{φ(λ)

n }n∈Z+ , which satisfy

1

2π

∫ π

−π

φ
(λ)
n (eiθ )φ(λ)

m (eiθ ) (1 − cos θ)λ dθ = δn,m,
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by the relation�
(α)
n (z) ∝ φ

( α
2 )

n (−z). The Szegő–Askey polynomials are known to sat-

isfy a Delsarte–Genin relationship to the Jacobi polynomials P

(
α−1
2 ,− 1

2

)
n and P

(
α+1
2 , 12

)
n

due to the symmetry of the weight of orthogonality [18, p. 295], [15, 18.33.14]. Specif-
ically,

e−niθ�
(α)
2n (eiθ ) = AnP

(
α−1
2 ,− 1

2

)
n (cos θ) + iBn sin θP

(
α+1
2 , 12

)
n−1 (cos θ) ,

e(1−n)iθ�
(α)
2n−1(e

iθ ) = CnP

(
α−1
2 ,− 1

2

)
n (cos θ) + iDn sin θP

(
α+1
2 , 12

)
n−1 (cos θ) ,

for some real constants {An, Bn, Cn, Dn}n∈Z+ . It is therefore possible to express the
functions� in terms of Jacobi polynomials; this is something we will not pursue here,
but could be of interest for further research. In what follows we will restrict ourselves
to the case α = 0, which is extremely simple.

We are not aware if this connection between the general Laguerre polynomials and
Szegő–Askey polynomials (and hence Jacobi polynomials) via the Fourier transform
has been acknowledged before in the literature.

3.2 TheMalmquist–Takenaka System

The expression (17) comes into its own once we let α = 0, namely consider the
‘simple’ Laguerre polynomials Ln . Now W (θ) ≡ 1 and so �

(α)
n (z) = zn . We have

bn = n + 1, cn = 2n + 1 and

ϕn(x) =
√

2

π
in

(1 + 2ix)n

(1 − 2ix)n+1 , n ∈ Z+.

The factor of (−1)n which might appear to have been added here comes from the

identity 2F1

[−n, 1;
1; z

]
= (1 − z)n with z = 2/(1 − 2ix). Alternatively, we may

apply a formula for the Laplace transform of Laguerre polynomials at an appropriate
point in the complex plane [15, 18.17.34], to obtain

∫ ∞

0
Ln(ξ)e− ξ

2+ixξdξ = 2(−1)n (1 + 2ix)n

(1 − 2ix)n+1 , n ∈ Z+.

ByTheorem2.4, these functions are dense in the Paley–Wiener spacePW [0,∞)(R).
To obtain a basis for thewhole of L2(R), wemust add to this a basis forPW(−∞,0](R).
The obvious way to do so is to consider the same functions as above, but for the
orthogonal polynomials with respect to χ(−∞,0](ξ)eξdξ , which are precisely Ln(−ξ),
n ∈ Z+. Using the Laplace transform again, this leads to the functions
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Fig. 1 Real and imaginary parts (blue lines with black ‘+’s and green lines with black ‘×’s, respectively)

of the MT functions ϕn for n = −3, . . . , 2. The envelope of ±
√

2
π(1+4x2)

is also plotted as a dashed line

(Color figure online)

ϕ̃n(x) = (−i)n

√
2π

∫ 0

−∞
eixξ Ln(−ξ) e

ξ
2 dξ = (−i)n

√
2π

∫ ∞

0
e−ixξ Ln(ξ) e− ξ

2 dξ

= in
√

2

π

(1 − 2ix)n

(1 + 2ix)n+1 .

Letting ϕn = ϕ̃−n−1, n ≤ −1, we obtain the Malmquist–Takenaka system (3).
As a matter of historical record, [14] and [19] considered a more general system of

the form

Bn(z) =
√
1 − |θn|2
1 − θnz

ψn(z), B−n(z) = Bn(1/z), n ∈ Z+,

where ψn(z) = ∏n−1
k=0(z − θk)/(1 − θk z) is a finite Blaschke product and |θk | < 1,

k ∈ Z+. The nature of the questions they have asked was different—essentially, they
proved that the above system is a basis (which need not be orthogonal) ofH2, theHardy
space of complex analytic functions in the open unit disc. In our case the θk ≡ 2i are
all the same and outside the unit circle, yet it seems fair (and consistent with, say, [16])
to call (3) a Malmquist–Takenaka system.

Figure 1 displays the real and imaginary parts of few Malmquist–Takenaka func-
tions.
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Let us dwell briefly on the properties of (3).

• The system is dense in L2(R), because standard Laguerre polynomials are dense
in L2((0,∞), e−ξdξ) and {Ln(−ξ)}n∈Z+ is dense in L2((−∞, 0), eξdξ).

• All the functions ϕn are uniformly bounded,

|ϕn(x)| =
√

2

π

1√
1 + 4x2

, x ∈ R.

• The differentiation matrix,

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
. . .

. . . −5i −2
2 −3i −1

1 −i 0
0 i 1

−1 3i 2

−2 5i
. . .

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (18)

is skew-Hermitian, tridiagonal and reducible—specifically, D−1,1 = D1,−1 = 0
and thematrix decomposes into two irreducible ‘chunks’, corresponding ton ≤ −1
and n ≥ 0.
While (18) follows from our construction, it can be also proved directly from (3):

ϕ′
n(x) = in

√
2

π

[
2in

(1 + 2ix)n−1

(1 − 2ix)n+1 + 2i(n + 1)
(1 + 2ix)n

(1 − 2ix)n+2

]

= in+1

√
2

π

(1 + 2ix)n−1

(1 − 2ix)n+2 [2n(1 − 2ix) + 2(n + 1)(1 + 2ix)]

= in+1

√
2

π

(1 + 2ix)n−1

(1 − 2ix)n+2 (4n + 2 + 4ix),

while

−nϕn−1(x) + (2n + 1)iϕn(x) + (n + 1)ϕn+1(x)

= in+1

√
2

π

(1 + 2ix)n−1

(1 − 2ix)n+2 [n(1 − 2ix)2 + (2n + 1)(1 + 4x2) + (n + 1)(1 + 2ix)2]

= in+1

√
2

π

(1 + 2ix)n−1

(1 − 2ix)n+2 (4n + 2 + 4ix).
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• TheMT systemobeys a host of identities thatmake it amenable for implementation
in spectral methods. The following were identified by Christov,

ϕm(x)ϕn(x) = 1√
2π

[ϕm+n(x) − iϕm+n+1(x)], m, n ∈ Z+,

xϕ′
n(x) = −n

2
iϕn−1(x) − 1

2
ϕn(x) − n + 1

2
ϕn+1(x), n ∈ Z (19)

[4] and the following is apparently new,

4i

1 + 4x2
ϕn(x) = −ϕn−1(x) + 2ϕn(x) + ϕn+1(x), n ∈ Z.

In particular, (19) implies that

∞∑
m=−∞

f̂mϕm(x)

∞∑
n=−∞

ĥnϕn(x)

= 1√
2π

∞∑
n=−∞

[ ∞∑
m=−∞

f̂m(ĥn−m − iĥn−m−1)

]
ϕn(x),

allowing for an easy multiplication of expansions in the MT basis.

3.3 Expansion Coefficients

Arguably the most remarkable feature of the MT system is that expansion coefficients
can be computed very rapidly indeed. Thus, let f ∈ L2(R). Then

f (x) =
∞∑

n=−∞
f̂nϕn(x) where f̂n =

∫ ∞

−∞
f (x)ϕn(x)dx, n ∈ Z.

Wedo not dwell here on speed of convergence except for brief comments in Sect. 3.4—
this is a nontrivial issue and, while general answer is not available, there is wealth of
relevant material in [20]. Our concern is with efficient algorithms for the evaluation
of f̂n for −N ≤ n ≤ N − 1.

The key observation is that

ϕn(x) = in
√

2

π

1

1 − 2ix

(
1 + 2ix

1 − 2ix

)n

and the term on the right is of unit modulus. We thus change variables

1 + 2ix

1 − 2ix
= eiθ , −π < θ < π, (20)
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in other words x = 1
2 tan

θ
2 and, in the new variable

ϕn(x) = in
√

2

π
ei(n+ 1

2 )θ cos
θ

2
, n ∈ Z.

We deduce that

f̂n = (−i)n

2
√
2π

∫ π

−π

(
1 − i tan

θ

2

)
f

(
1

2
tan

θ

2

)
e−inθdθ, n ∈ Z, (21)

a Fourier integral. Two immediate consequences follow. Firstly, the convergence of
the coefficients as |n| → ∞ is dictated by the smoothness of the modified function

F(θ) =
(
1 − i tan

θ

2

)
f

(
1

2
tan

θ

2

)
, −π < θ < π.

Secondly, provided F is analytic, (21) can be approximated to exponential accuracy
by a Discrete Fourier Transform5 and this, in turn, can be computed rapidly with Fast
Fourier Transform (FFT): the first N coefficients require O (

N log2 N
)
operations.

Proposition 3.1 (Fast approximation of coefficients) The truncated MT system
{ϕn}N−1

n=−N is orthonormal with respect to the discrete inner product,

〈 f , g〉N = π

4N

2N∑
k=1

f (xk) g (xk)(1 + 4x2k ),

n where

xk = 1

2
tan

θk

2
, k = 1, 2, . . . , 2N ,

and θ1, . . . , θ2N are equispaced points in the periodic interval [−π, π ] (such that
θk − θk−1 = π/N). The coefficients of a function f in the span of {ϕn}N−1

n=−N are
exactly equal to

〈 f , ϕn〉 = 〈 f , ϕn〉N = (−i)n

√
π

2

1

2N

2N∑
k=1

f (xk)(1 − 2ixk)e
−inθk , (22)

and can be computed simultaneously in O (
N log2 N

)
operations using the FFT.

Proof Let k, 
 be integers satisfying −N ≤ k, 
 ≤ N − 1. Then

〈ϕ
, ϕk〉N = 1

2N

2N∑
j=1

(
1 + 2ix j

1 − 2ix j

)
−k

.

5 The approximation remains valid—but less accurate—for F ∈ Ck (−π, π).
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If k = 
 then this is clearly equal to 1. Otherwise, using Eq. (20), we see that,

〈ϕ
, ϕk〉N = 1

2N

2N∑
j=1

ei(
−k)θ j .

Summing the geometric series, since θ j − θ j−1 = π/N we have

〈ϕ
, ϕk〉N = ei(
−k)θ1
1

2N

1 − e2π i(k−
)

1 − eπ i(k−
)/N
= 0.

This proves that {ϕn}N−1
n=−N forms an orthonormal basiswith respect to the inner product

〈 · , · 〉N . It follows that 〈 f , h〉 = 〈 f , h〉N for all f and h in the span of {ϕn}N−1
n=−N .

Inserting h(x) = ϕn(x) into the expression for the discrete inner product and then
using equation (20) yields (22). �	

3.4 Speed of Convergence

Theorem 3.2 Let f ∈ L2(R). The generalised Fourier coefficients satisfy

〈 f , ϕn〉 = O
(
ρ−|n|) , (23)

for some ρ > 1 if and only if the function t �→ (1 − 2it) f (t) can be analytically
continued to the set

Cρ = C \ (
Drρ (aρ) ∪ Drρ (aρ)

)

whereC is the Riemann sphere consisting of the complex plane and the point at infinity,
and Dr (a) is the disc with centre a ∈ C and radius r > 0, with

aρ = i

2

ρ + ρ−1

ρ − ρ−1 , rρ = 1

ρ − ρ−1 .

Proof See [21] and [1]. �	

Aswas noted byWeideman, for exponential convergencewe require f to be analytic
at infinity, which is of meagre practical use. An example for a function f of this kind
is

f (x) = 1

1 + x2
(24)
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Fig. 2 MT errors for example (24) with N = 10, 20, 30, 40

Since f is a meromorphic function with singularities at ±i, we obtain exponential
decay with ρ = 3—this is evident from the explicit expansion

1

1 + x2
= −√

2π
−1∑

n=−∞

(−i)n

3−n
ϕn(x) + √

2π
∞∑

n=0

(−i)n

3n+1 ϕn(x),

whose proof we leave to the reader. This is demonstrated in Fig. 2, where we display

the errors
∣∣∣ f (x) − ∑N

n=0 f̂nϕn(x)

∣∣∣ for N = 10, 20, 30 and 40. Compare this with

Fig. 3, where we have displayed identical information for an expansion in Hermite
functions. Evidently, MT errors decay at an exponential speed, while the error for
Hermite functions decreases excruciatingly slowly as N increases.

Meromorphic functions, however, are hardly at the top of the agenda when it
comes to spectral methods. In particular, in the case of dispersive hyperbolic equations
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Fig. 3 Hermite function errors for example (24) with N = 10, 20, 30, 40

we are interested in wave packets—strongly localised functions, exhibiting double-
exponential decay away from an envelope within which they oscillate rapidly. An
example (with fairly mild oscillation) is the function

f (x) = e−x2 cos(10x). (25)

Since f has an essential singularity at infinity, there is no ρ > 1 so that (23) holds—in
other words, we cannot expect exponentially-fast convergence. We report errors for
MT and Hermite functions in Figs. 4 and 5 respectively for N = 10, 40, 70 and 100:
definitely, the convergence ofMT slows down (part of the reason is also the oscillation)
but it still is superior to Hermite functions.

The general rate of decay of the error (equivalently, the rate of decay of | f̂|n|| for
n � 1 for analytic functions and the MT system) is unknown, although [21] reports
interesting partial information, which we display in Table 1 (taken from [21]). The
rate of decay does not seem to follow simple rules. For some functions the rate of
decay is spectral (faster than a reciprocal of any polynomial), yet sub-exponential.
For other functions it is polynomial (and fairly slow). Figure 6 exhibits MT errors for
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Fig. 4 MT errors for example (25) with N = 10, 40, 70, 100

f (x) = sin x/(1 + x2) and N = 20, 40, 60, 80: evidently it is in line with Table 1. It
is fascinating that such a seemingly minor change to (24) has such far-reaching impact
on the rate of convergence. This definitely calls for further insight.

A future paper will address the rate of approximation of wave packets by both the
MT basis and other approximation schemes.

4 Characterisation of Mapped andWeighted Fourier Bases

The most pleasing feature of the MT basis is that the coefficients can be expressed as
Fourier coefficients of a modified function. They can then be approximated using the
Fast Fourier Transform. Are there other orthogonal systems like this?

Let us consider all orthonormal systems � = {ϕn}n∈Z in L2(R) with a tridiagonal
skew-Hermitian differentiation matrix such that for all f ∈ L2(R), the coefficients
are equal to the classical Fourier coefficients of k(θ) f (h(θ)), −π < θ < π , for
some functions k and h (with a possible diagonal scaling by {γn}n∈Z). Specifically,
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Fig. 5 Hermite function errors for example (25) with N = 10, 40, 70, 100

Table 1 The rate of decay of the
coefficients f̂n in an MT
approximation of different
functions

f (x) f̂n

1

1 + x4
O

(
ρ−|n|), ρ = 1 + √

2

e−x2 O
(
e−3|n|2/3/2)

sech x O
(
e−2|n|1/2)

sin x

1 + x2
O

(
|n|−5/4

)
sin x

1 + x4
O

(
|n|−9/4

)

we consider the ansatz

〈 f , ϕn〉 = γn

∫ π

−π

e−inθ k(θ) f (h(θ)) dθ, n ∈ Z. (26)
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Fig. 6 MT errors for f (x) = sin x/(1 + x2) with N = 20, 40, 60, 80

We assume that h : (−π, π) → R is a differentiable function which is strictly increas-
ing and onto, whose derivative is a measurable function. This implies the existence of
a differentiable, strictly increasing inverse function H : R → (−π, π). The chain rule
implies h′(θ)H ′(h(θ)) ≡ 1 (so that H ′ is also a measurable function). The function k
is assumed to be a complex-valued L2(−π, π) function (which makes the integral in
(26) well defined). The constants γn are complex numbers. We assume nothing more
about k, h and γn in this section (but deduce considerably more).

Making the change of variables x = h(θ) yields,

〈 f , ϕn〉 =
∫ ∞

−∞
γne

−inH(x)k(H(x))H ′(x) f (x) dx . (27)

For this to hold for all f ∈ L2(R), we must have

ϕn(x) = γ n K (x)einH(x), (28)

where K (x) = H ′(x)k(H(x)).
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How does this fit in with the MT basis? In the special case of Malmquist–Takenaka
we have

h(θ) = 1

2
tan

θ

2
, H(x) = 2tan−1(2x),

k(θ) = 1 − i tan
θ

2
, K (x) =

√
2

π

1

1 − 2ix
,

γn = (−i)n .

We prove the following theoremwhich characterises theMalmquist–Takenaka system
as (essentially) the only one of the kind described by Eq. (28).

Theorem 4.1 All systems � = {ϕn}n∈Z of the form (28), such that

1. � is orthonormal in L2(R),
2. � has a tridiagonal skew-Hermitian differentiation matrix as in Eq. (2), but indexed

by all of Z,

are of the form

ϕn(x) = γn

√ |Imλ|
π

eiωx (λ − x)n+δ

(
λ − x

)n+δ+1 (29)

where ω, δ ∈ R, λ ∈ C \ R and γn ∈ C such that |γn| = 1 for all n ∈ Z. The
differentiation matrix in the case where γn = (−i)n, Imλ = 1

2 and ω = 0 has the
terms

bn = n + δ + 1, cn = 2(n + δ) + 1, n ∈ Z. (30)

Proof Let us derive some necessary consequences of orthonormality of� by applying
the change of variables x = h(θ) to the inner product.

∫ ∞

−∞
ϕn(x)ϕm(x) dx = γnγ m

∫ ∞

−∞
|K (x)|2ei(m−n)H(x) dx (31)

= γnγ m

∫ π

−π

h′(θ)|K (h(θ))|2ei(m−n)θ dθ. (32)

Orthogonality implies that the function θ �→ h′(θ)|K (h(θ))|2 is orthogonal to θ �→
eikθ for all k ∈ Z \ {0}. It is therefore a constant function. This constant is positive
since h is strictly increasing and K is not identically zero. Normality of the basis
implies that |γn|2 = [

2πh′(θ)|K (h(θ))|2]−1
, which is a constant independent of n.

We can absorb this constant into K and assume that |γn| = 1 for all n ∈ Z. Therefore,
h′(θ)|K (h(θ))|2 ≡ 1/(2π), which is equivalent to |K (x)|2 = H ′(x)/(2π).

Since ϕ0(x) = γ0K (x) and ϕ0 is infinitely differentiable (because it is propor-
tional to the inverse Fourier transform of a superalgebraically decaying function
g), we deduce that K must be infinitely differentiable. The relationship H ′(x) =
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2π |K (x)|2 therefore implies that H is infinitely differentiable; in particular H ′′(x) =
4π�[

K ′(x)K (x)
]
. Furthermore, there exists an infinitely differentiable function

κ : R → R such that

K (x) = eiκ(x)

√
H ′(x)

2π
.

Let us derive more necessary consequences by taking into account the tridiagonal
skew-Hermitian differentiation matrix. For all n ∈ Z,

K ′(x)γne
inH(x) + K (x)γn inH ′(x)einH(x)

= −bn−1K (x)γn−1e
i(n−1)H(x) + icnγn K (x)einH(x) + bn K (x)γn+1e

i(n+1)H(x).

Note that K ′(x) =
[
iκ ′(x) + H ′′(x)

2H ′(x)

]
K (x), so dividing through by K (x)γn ieinH(x)

leads to

κ ′(x) = cn − nH ′(x) + βn−1e
−iH(x) + βne

iH(x) + i
H ′′(x)

2H ′(x)
,

where βn = −ibnγn+1/γn (here we use the fact that γ −1
n = γ n). Without loss of

generality, we can assume that βn ∈ R for all n because the symmetries discussed
in Sect. 2.2 allow us to choose {γn}n∈Z (because they are all of the form eiκn for real
numbers {κn}n∈Z).

Since κ and H are real-valued functions and cn and βn are real for all n ∈ Z,
equating real and imaginary parts yields

κ ′(x) = cn − nH ′(x) + (βn + βn−1) cos H(x) (33)

0 = (βn − βn−1) sin H(x) + H ′′(x)

2H ′(x)
(34)

It follows that βn − βn−1 is a constant which is independent of n, so we can write
a = 2(βn − βn−1) for some real constant a and equation (34) becomes

H ′′(x) = −aH ′(x) sin H(x),

which, after integrating with respect to x , becomes

H ′(x) = a cos H(x) + b

for some real constant b. Since H mapsR onto (−π, π) in a strictly increasingmanner,
by themonotone convergence theoremwemust have H ′(±∞) = 0. Since H ′(±∞) =
a cos(±π) + b, we must have a = b. Therefore, using the formula cos θ + 1 =
2 cos2(θ/2), we obtain,

1

2
H ′(x) sec2

H(x)

2
= a.
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Integrating with respect to x , we get

tan
H(x)

2
= ax + c

for some real constant c. Hence there exist real constants A and B such that

H(x) = 2 arctan(Ax + B). (35)

Note that necessarily A �= 0. All that remains is to determine K (x), which can be
done by determining κ(x). Taking n = 0 in Eq. (33) gives us

κ ′(x) = c0 + (β0 + β−1) cos(2 arctan(Ax + B)). (36)

The antiderivative of cos(2 arctan(Ax + B)) is 2A−1 arctan(2x) − x , so there exist
real constants ω, a and b such that

κ(x) = ωx + 2a arctan(Ax + B) + b.

Whence we deduce that

K (x) =
√

A

π
eiωx+i2a arctan(Ax+B)+ib 1√

1 + (Ax + B)2
(37)

Using exp(i2 arctan(Ax+B)) = (1+i(Ax+B))/(1−i(Ax+B)) = −(λ−x)/(λ−x),
where λ = A−1(i − B) ∈ C \ R, we deduce

ϕn(x) =
√

A

π
eiωx+ib(−1)n+a 1√

1 + (Ax + B)2

(λ + x)n+a

(
λ − x

)n+a (38)

= γn

√ |Imλ|
π

eiωx (λ + x)n+a− 1
2

(
λ − x

)n+a+ 1
2

, (39)

where γn = eib(−1)n+a . Letting δ = a − 1
2 shows that the system � must necessarily

be of the form in Eq. (29). To complete the proof we must turn to the question of
sufficiency. A derivation exactly as in Sect. 3.2 but with n replaced by n + δ verifies
the explicit form of the coefficients (30) for the case γn = (−i)n , λ = i/2 and ω = 0.
The symmetry considerations in Sect. 2.2 show that the other values of γn , λ and ω

yield orthonormal systems with a tridiagonal skew-Hermitian differentiation matrix
too. �	

5 Concluding Remarks

The subject matter of this paper is the theory of complex-valued orthonormal systems
in L2(R) with a tridiagonal, skew-Hermitian differentiation matrix. On the face of it,
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this is a fairly straightforward generalisation of the work of [13]. Yet, the more gen-
eral setting confers important advantages. In particular, it leads in a natural manner
to the Malmquist–Takenaka system. The latter is an orthonormal system of rational
functions, which we have obtained from Laguerre polynomials through the agency
of the Fourier transform. The MT system has a number of advantages over, say, Her-
mite functions, which render it into a natural candidate for spectral methods for the
discretization of differential equations on the real line. It allows for an easy calculus,
because MT expansions can be straightforwardly multiplied. Most importantly, the
calculation of the first N expansion coefficients can be accomplished, using FFT, in
O (

N log2 N
)
operations. Moreover, the MT system is essentially unique in having

the latter feature.
The FFT, however, is not the only route toward ‘fast’ computation of coefficients in

the context of orthonormal systems onL2(R)with skew-Hermitian or skew-symmetric
differentiation matrices. In [12] we characterised all such real systems (thus, with
a Skew-symmetric differentiation matrix) whose coefficients can be computed with
either Fast Cosine Transform, Fast Sine Transform or a combination of the two, again
incurring an O (

N log2 N
)
cost. We prove there that there exist exactly four systems

of this kind.
The connections laid out in Sect. 3 between the Fourier–Laguerre functions and

the Szegő–Askey polynomials (and hence Jacobi polynomials via the Delsarte–Genin
transformation), are suggestive of a possible generalisation of Theorem 4.1 on the
characterisation of the MT basis. It may be possible to characterise all systems which
are orthonormal, have a tridiagonal skew-Hermitian differentiation matrix, and which
are of the form

ϕn(x) = �(x)�n

(
eiH(x)

)
,

where � ∈ L2(R), H maps the real line onto (−π, π), and {�n}n∈Z+ is a system of
orthogonal polynomials on the unit circle. The expansion coefficients for a function in
such a basis are equal to expansion coefficients of a mapped and weighted function in
the orthogonal polynomial basis {�n}n∈Z+ . The Fourier–Laguerre bases, in particular
the MT basis, are certainly within this class of functions, but one can ask if there are
more.

From a practical point of view, it is worth noticing that while theMT basis elements
decay like |x |−1 as x → ±∞, the Fourier-Laguerre functions decay like |x |−1−α/2

where α > −1 is the parameter in the generalised Laguerre polynomial. For the
approximationof functionswith a knownasymptotic decay rate itmaybe advantageous
to use a basis with the same decay rate.

The jury is out on which is the ‘best’ orthonormal L2(R) system with a skew-
Hermitian (or skew-symmetric) tridiagonal differentiation matrix and whose first N
coefficients can be computed inO (

N log2 N
)
operations. While some considerations

have been highlighted in [12], probably the most important factor is the speed of
convergence. Approximation theory in L2(R) is poorly understood and much remains
to be done to single out optimal orthonormal systems for different types of functions.
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Partial results, e.g. in [6,20], indicate that the speed of convergence of such systems
is a fairly delicate issue.

Acknowledgements The authors with to acknowledge helpful discussions with Adhemar Bultheel (KU
Leuven), Margit Pap (Pécs) and André Weideman (Stellenbosch). MW would like to thank FWO Research
Foundation Flanders for the postdoctoral research fellowship he enjoyed during the research and writing of
this paper.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Boyd, J.P.: Spectral methods using rational basis functions on an infinite interval. J. Comput. Phys.
69(1), 112–142 (1987)

2. Bultheel, A., Carrette, P.: Fourier analysis and the Takenaka-Malmquist basis. In: Proceedings 42nd
IEEE Conference Decision & Control, Maui, Hawaii, December 2003 (2003)

3. Bultheel, A., González-Vera, P., Hendriksen, E., Njåstad, O.: Orthogonal Rational Functions, Volume 5
of Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press,
Cambridge (1999). https://doi.org/10.1017/CBO9780511530050

4. Christov, C.: A complete orthonormal system of functions in l2(−∞, ∞) space. SIAM J. Appl. Math.
42(6), 1337–1344 (1982)

5. Eisner, T., Pap, M.: Discrete orthogonality of the Malmquist–Takenaka system of the upper half plane
and rational interpolation. J. Fourier Anal. Appl. 20(1), 1–16 (2014). https://doi.org/10.1007/s00041-
013-9285-2

6. Ganzburg, M.I.: Exact errors of best approximation for complex-valued nonperiodic functions. J.
Approx. Theory 229, 1–12 (2018). https://doi.org/10.1016/j.jat.2018.02.002

7. Gautschi, W.: Orthogonal Polynomials: Computation and Approximation. Oxford University Press,
Oxford (2004)

8. Hairer, E., Iserles, A.: Numerical stability in the presence of variable coefficients. Found. Comput.
Math. 16(3), 751–777 (2016). https://doi.org/10.1007/s10208-015-9263-y

9. Higgins, J.R.: Completeness and Basis Properties of Sets of Special Functions. Cambridge Tracts in
Mathematics, vol. 72. Cambridge University Press, Cambridge-New York-Melbourne (1977)

10. Ignjatovic, A.: Local approximations based on orthogonal differential operators. J. Fourier Anal. Appl.
13(3), 309–330 (2007)

11. Iserles, A.: The joy and pain of skew symmetry. Found. Comput. Math. 16(6), 1607–1630 (2016).
https://doi.org/10.1007/s10208-016-9321-0

12. Iserles, A., Webb, M.: Fast computation of orthogonal systems with a skew-symmetric differentiation
matrix. Commun. Pure Appl. Math. (to appear) (2019a)

13. Iserles, A., Webb, M.: Orthogonal systems with a skew-symmetric differentiation matrix. Found.
Comput. Math. (2019b). https://doi.org/10.1007/s10208-019-09435-x

14. Malmquist, F.: Sur la détermination d’une classe de fonctions analytiques par leurs valeurs dans un
ensemble donné de points. In: ‘C.R. 6iéme Cong. Math. Scand. (Kopenhagen, 1925)’, Gjellerups,
Copenhagen, pp. 253–259 (1926)

15. Olver, F.W. J., Lozier, D. W., Boisvert, R. F., Clark, C.W., eds: NIST Handbook of Mathematical
Functions. U.S. Department of Commerce, National Institute of Standards and Technology, Cambridge
University Press, Washington, DC, Cambridge. With 1 CD-ROM (Windows, Macintosh and UNIX)
(2010)

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/CBO9780511530050
https://doi.org/10.1007/s00041-013-9285-2
https://doi.org/10.1007/s00041-013-9285-2
https://doi.org/10.1016/j.jat.2018.02.002
https://doi.org/10.1007/s10208-015-9263-y
https://doi.org/10.1007/s10208-016-9321-0
https://doi.org/10.1007/s10208-019-09435-x


19 Page 28 of 28 Journal of Fourier Analysis and Applications (2020) 26 :19

16. Pap, M., Schipp, F.: Equilibrium conditions for the Malmquist–Takenaka systems. Acta Sci. Math.
(Szeged) 81(3—-4), 469–482 (2015). https://doi.org/10.14232/actasm-015-765-6

17. Rainville, E.D.: Special Functions. The Macmillan Co., New York (1960)
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