
The University of Manchester Research

Applying constraint programming to minimal lottery
designs

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Cushing, D., & Stewart, D. I. (2023). Applying constraint programming to minimal lottery designs. (Constraints).

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:10. Jan. 2025

https://research.manchester.ac.uk/en/publications/116422c4-b2bc-4c0e-a595-bf9f460712a0

ar
X

iv
:2

30
7.

12
43

0v
1

 [
m

at
h.

C
O

]
 2

3
Ju

l 2
02

3

YOU NEED 27 TICKETS TO GUARANTEE A WIN
ON THE UK NATIONAL LOTTERY

DAVID CUSHING AND DAVID I. STEWART

Abstract. In the UK National Lottery, players purchase tickets comprising their choices
of six different numbers between 1 and 59. During the draw, six balls are randomly se-
lected without replacement from a set numbered from 1 to 59. A prize is awarded to any
player who matches at least two of the six drawn numbers. We identify 27 tickets that
guarantee a prize, regardless of which of the 45,057,474 possible draws occurs. Moreover,
we determine that 27 is the optimal number of tickets required, as achieving the same
guarantee with 26 tickets is not possible.

1. Introduction

A lottery is a popular method of gambling in which players try to guess random numbers
in advance of their generation. For our purposes, a lottery revolves around sampling
random draws of size p from the set of numbers {1, . . . , n}; participants purchase tickets
containing their choice of a subset of k of these numbers and will win a prize if one of
their tickets has at least t numbers in common with those drawn. A well-studied question
is to determine the minimum number of tickets, denoted j = L(n, k, p, t), that must be
purchased to guarantee that no matter which numbers appear in the random draw, at
least one of the j tickets will have at least t numbers in common with the draw.

Calculating these numbers has proven to be challenging, particularly for lotteries that
are actively played worldwide. One common set of parameters is (n, k, p) = (49, 6, 6), an
example of which was the UK national lottery upon its introduction in 1994. In October
2015, the UK national lottery underwent a change in which n was increased to 59. By way
of compensation, a prize was introduced for matching 2 balls on a ticket. Consequently,
the value of L(59, 6, 6, 2) is somewhat significant.

Main Theorem. We have L(59, 6, 6, 2) = 27.

In Section 2 we give an explicit list of 27 tickets which are always guaranteed to win
some prize; we are pleased that we could describe this rather elegantly using some basic
structures coming from finite geometry. The hard part in proving the theorem is to show
that there does not also exist a set of 26 tickets that work. To this end, the best available
lowest bound in the literature is to be found in [FSZ96]:

Theorem 1.1 (Furedi–Székely–Zubor). We have

L(n, k, p, 2) ≥
1

k
· min∑p−1

i=1
ai=n

(

p−1
∑

i=1

ai

⌈

ai − 1

k − 1

⌉

)

.

Applied to our situation this yields only L(59, 6, 6, 2) ≥ 23, which is some distance from
the true value. In the foundational paper, [BR98], the authors compute L(n, 6, 6, 2) for
n ≤ 54. We bolster the techniques of op. cit. theoretically and computationally, recovering

1

http://arxiv.org/abs/2307.12430v1

2 CUSHING AND STEWART

and extending the results therein to calculate all values of L(n, 6, 6, 2) for n ≤ 61; see
Theorem 6.1. Notably, we make substantial use of the constraint programming library
[COC97] in SICStus Prolog1 [CM12]. In that respect, this paper continues a programme
of work the authors began in [CSS22] to apply Prolog and constraint programming to
questions arising in pure mathematics. See op. cit. for a discussion of Prolog.

Remark 1.2. Having observed that the set of tickets we describe below would have netted
the authors £1810 in the lottery draw of 21 June 2023, the authors were motivated to
road-test the tickets in the lottery draw of 1 July 2023; they matched just two balls on
three of the tickets, the reward being three lucky dip tries on a subsequent lottery, each
of which came to nothing. Since a ticket costs £2, the experiment represented a loss to
the authors of £54.

This unfortunate incident therefore serves both as a verification of our result and of the
principle that one should expect to lose money when gambling.

For a more philosophical discussion of the National Lottery and its implementation for
supporting charitable causes, we recommend David Runciman’s article in the London
Review of Books [Run96].

2. The 27 Tickets

An appealing way to construct 27 tickets that will match two numbers no matter which
balls are drawn is through labelling the vertices of some finite geometrical structures as
in Fig. 1.

Perhaps the most well-known finite geometry is the projective plane of order 2—also
known as a Fano plane—which is depicted by the three diagrams in Fig. 1 which have 7
vertices. There are 7 ‘lines’ (one being represented by a circle) that satisfy the property
that any two points lie in exactly one line, and two lines intersect in exactly one point.
Tickets may be read off the Fano plane diagrams by concatenating the labels on the
points in each of the 7 lines. (Together this accounts for 21 of the tickets.)

The triangle can be viewed as the projective plane of order 1; it supplies 3 tickets by
writing down each of the two labels on its three lines.

Lastly, the triangle with a point in the middle is a sort of ‘decompactified’ projective
plane of order 1: every line should be considered also to go through the point ∅; this
gives us the final 3 tickets.

Explicity, we get:

1, 2, 3, 4, 5, 6 9, 10, 11, 12, 13, 14 18, 19, 20, 21, 26, 27 32, 33, 34, 35, 40, 41 46, 47, 48, 49, 54, 55
1, 2, 3, 4, 7, 8 9, 10, 11, 15, 16, 17 18, 19, 22, 23, 30, 31 32, 33, 36, 37, 44, 45 46, 47, 50, 51, 58, 59
1, 2, 5, 6, 7, 8 12, 13, 14, 15, 16, 17 18, 19, 24, 25, 28, 29 32, 33, 38, 39, 42, 43 46, 47, 52, 53, 56, 57

20, 21, 22, 23, 28, 29 34, 35, 36, 37, 42, 43 48, 49, 50, 51, 56, 57
20, 21, 24, 25, 30, 31 34, 35, 38, 39, 44, 45 48, 49, 52, 53, 58, 59
22, 23, 24, 25, 26, 27 36, 37, 38, 39, 40, 41 50, 51, 52, 53, 54, 55
26, 27, 28, 29, 30, 31 40, 41, 42, 43, 44, 45 54, 55, 56, 57, 58, 59

The reader may check for themselves that any draw of 6 numbers from 1 to 59 will match
at least two numbers with at least one of the above tickets.

1A free evaluation copy of SICStus can be downloaded from https://sicstus.sics.se/

https://sicstus.sics.se/

YOU NEED 27 TICKETS TO GUARANTEE A WIN ON THE UK NATIONAL LOTTERY 3

5,6 7,8

3,4

1,2

∅

12,13,14 15,16,17

9,10,11

26,27 30,31

18,19

24,25

28,29

22,2320,21

40,41 44,45

32,33

38,39

42,43

36,3734,35

54,55 58,59

46,47

52,53

56,57

50,5148,49

Figure 1. 27 tickets through finite geometry

3. Definitions and notation

A hypergraph H is a pair (X,B) with X a set and B a set of subsets of X . We will refer to
the elements x ∈ X as vertices and the elements B ∈ B as blocks. The order of H is the
cardinality of the set X . The size of H is the number of blocks in B; i.e. the cardinality
of the set B. A hypergraph is said to be k-uniform if each B ∈ B has size k. Note that
a 2-uniform hypergraph is a graph: a block B = {x, y} identifies with an edge x− y.

An (n, k, p, t; j)-lottery design is a hypergraph H = (X,B), such that:

(i) there are n vertices in X—i.e. H has order n;
(ii) there are j elements B ∈ B—i.e. H has size j;
(iii) each B ∈ B contains k vertices—i.e. H is k-uniform;

4 CUSHING AND STEWART

(iv) for any subset D of vertices with |D| = p, there is at least one B ∈ B such that
|B ∩D| ≥ t.

An (n, k, p, t)-lottery design is an (n, k, p, t; j)-lottery design in which j is minimal; we
denote this minimal integer by L(n, k, p, t).

Remark 3.1. Thinking of X as a set of balls, B as a set of tickets, and D as a draw,
condition (iv) says that at least one ticket in B matches at least t of the balls in D.

In order to avoid vacuous or incorrect statements we shall always insist n ≥ k ≥ t ≥ 2.

We say a block B is an x-block—or that B is incident with a vertex x—if x ∈ B. The
set Bx of all x-blocks is the star of x. We define the function

d : X → Z≥0; x 7→ |Bx|

so that d(x) is the degree of x; i.e. the number |Bx| of blocks incident with x. More
generally, if I is any subset of the vertices, then B is an I-block if it is an x-block for
some x ∈ I. We let BI =

⋃

x∈I Bx, and d(I) =
⋃

x∈I d(x) its degree. We will denote
by di := |d−1(i)| the number of vertices of degree i in H . We also need to analyse the
multiset of degrees of vertices in a subset I ⊆ X , so we define the function from the
power set P(X) of X to non-decreasing sequences of non-negative integers:

δ : P(X) →
n
⋃

r=0

(Z≥0)
r; I 7→ (d(x1), . . . , d(xn)), such that d(x1) ≤ d(x2) ≤ · · · ≤ d(xn).

It will be convenient to label the elements of I consistent with the output of δ, so for
example we may have I = {x1, . . . , x5} such that δ(I) = (2, 2, 3, 3, 4) indicating d(x1) =
2, . . . , d(x5) = 4.

Two vertices x, y ∈ X are adjacent if they are contained in a common block. The set of
all vertices adjacent to x is its neighbourhood N(x). A subset I of X is an independent
set or coclique if no pair of elements in I are adjacent. An independent set is maximal if
there is no independent set J ⊂ X with I (J .

Remarks 3.2. (i) If I is an independent set in an (n, k, p, t; x)-lottery design, then |I| < p
or else there would be a draw D = I matching at most 1 < t vertex in any block.

(ii) If I is a maximal independent set then we must have BI = X or else there is another
element y ∈ X which is not adjacent to any x ∈ I; which would imply there were a larger
maximal independent set X ∪ {y}.

(iii) It is easy to see that maximal independent sets need not have the same order. For
example, in the graph x − y − z, {y} is maximal independent, but {x, z} is a maximal
independent set of higher cardinality.

A set B′ ⊂ B of blocks is disjoint if B1 ∩ B2 = ∅ for any B1, B2 ∈ B′. In the literature,
such a B′ is also referred to as a matching. A block B ∈ B is isolated if B is disjoint from
any other block in B. (Of course, each vertex of an isolated block has degree 1.) If d0 = 0
and each vertex of degree 1 is contained in an isolated block, then we say H is segregated.

We will show later that H may be assumed segregated under the hypotheses of our main
theorem. In that case, the interesting analysis reduces to the full subhypergraph induced
by the vertices of degree at least 2. With that in mind, we give a further couple of
definitions which will prove central to our argument. Let I be an independent set. Then
an I-toe is a vertex of degree at least 2 appearing in just one block of BI . The I-foot

YOU NEED 27 TICKETS TO GUARANTEE A WIN ON THE UK NATIONAL LOTTERY 5

FI is the set of I-toes. If I = {x} we refer more succinctly to x-toes. (Note that an
x-toe may fail to be an J-toe for {x} (J .) If the independent set I is clear from the
context, then we will simply refer to toes and feet. So suppose I = {x1, . . . , xℓ}, with
δ(I) = (d(x1), . . . , d(xℓ)), where d(x1) > 1. Then set

τ(I) =
(
∣

∣

∣
FI ∩

⋃

Bx1

∣

∣

∣
, . . . ,

∣

∣

∣
FI ∩

⋃

Bxℓ

∣

∣

∣

)

,

which gives the distribution of the toes among the x-blocks as x ranges over the elements
of I.

4. Preliminaries

We use this section to collect a miscellany of results on hypergraphs and lottery designs of
varying generality, which we use in the sequel. Our strategy is heavily influenced by the
paper [BR98] and we use most of its results in one form or another. However, we noticed
a number of infelicities among the statements and proofs in op. cit. and so we take the
opportunity here to correct and simplify the statements and proofs therein. Happily, it
follows this paper is largely self-contained.

4.1. Upper bounds. An (n, k, t)-covering design is a k-uniform hypergraph H = (X,B)
such that every subset of X of size t appears as a subset in at least one block of B; we
assume n ≥ k ≥ t. Define C(n, k, t) as the minimal size of an (n, k, t)-covering design.
Obviously, an (n, k, t)-covering design is an (n, k, t, t)-lottery design, so L(n, k, p, t) ≤
C(n, k, t).

Lemma 4.1. We have

L(n, k, p, 2) ≤ min∑p−1

i=1
ai=n

(

p−1
∑

i=1

C(ai, k, 2)

)

.

Proof. Let Hi = (Xi,Bi) be (ai, k, 2)-covering designs of size C(ai, k, 2) such that X =
⊔

(Xi), and let D be a draw of p elements. Then at least two elements of D lie in at least
one Xj, so one block B of Bi contains those two elements. �

Lemma 4.1 can be deployed using the entries from Table 1. The table lists upper bounds
for C(n, 6, 2) for n ≥ 6 which were harvested from https://ljcr.dmgordon.org/cover.php;
these upper bounds are all known to be sharp except when n = 23 or 24.

Secondly, it is useful to know that lottery numbers increase mononotonically with n.

Lemma 4.2. We have L(n, k, p, t) ≤ L(n + 1, k, p, t).

Proof. Take an (n + 1, k, p, t; j)-lottery design H = (X,B) with |B| = j. Pick x ∈ X
and construct j subsets C of X \ {x} from those of B by replacing x ∈ B with any other
vertex of X \B, where necessary. Then it is clear that the hypergraph H0 = (X \ {x}, C)
is an (n, k, p, t; j)-lottery design. �

4.2. Reductions and constraints.

Lemma 4.3. Let H = (X,B) be an (n, k, p, t; j)-lottery design with j ≥ n/k. Then
there exists an (n, k, p, t; j)-lottery design H0 = (X,B0) with

⋃

B0 = X; i.e. there are no
elements of degree 0.

https://ljcr.dmgordon.org/cover.php

6 CUSHING AND STEWART

n C(n, 6, 2) ≤ n C(n, 6, 2) ≤
6 1 17 12
7 3 18 12
8 3 19 15
9 3 20 16
10 4 21 17
11 6 22 19
12 6 23 21
13 7 24 22
14 7 25 23
15 10 26 24
16 10 27 27

Table 1. Upper bounds for C(n, 6, 2)

Proof. Let H be a counterexample with d0 > 0 minimal. Suppose x ∈ X has degree 0.
Since jk ≥ n, there must be y ∈ X with d(y) ≥ 2. Suppose y ∈ B for some block B of
B and set B0 = (B \ {y}) ∪ {x}. Now set H0 = (X,B0), where B0 is B with the block
B replaced by B0. Then H0 is a k-uniform hypergraph of order n and size j. If D is
any subset of X of order p, then either there is C ∈ B0 with |C ∩ D| ≥ t or we may
assume |B ∩D| = t, y ∈ D and |B0 ∩D| = t− 1. This implies also x 6∈ D; but then the
alternative draw (D \ {y}) ∪ {x} cannot intersect a block of B in t elements. �

Lemma 4.4. If H = (X,B) is an (n, k, p, t; j)-lottery design with n ≥ k(p − 1) and
d0 = 0, then there exists a segregated (n, k, p, t; j)-lottery design.

Proof. Suppose there are r isolated blocks in H . Then taking one vertex from each yields
an independent set I, so r ≤ p − 1 by Remarks 3.2(i). If r = p − 1 then the isolated
blocks supply all kr = k(p− 1) vertices of X and the statement holds.

Suppose r = p− 2; then there are n− k(p− 2) elements not in isolated blocks. A draw
of order p containing one vertex from each isolated block together with two non-isolated
vertices can only intersect a non-isolated block in at least t places. Thus the non-isolated
blocks must between them contain every pair of the non-isolated vertices. This means
that each appears at least twice, or n− k(p− 2) = 2 and they both appear exactly once.
But the latter says they are themselves in an isolated block, a contradiction.

Hence we may assume r ≤ p− 3, leaving at least 2k elements not in isolated blocks. Let
B be a non-isolated block and assume that there are x, y ∈ B with d(x) = 1 and d(y) > 1.
We modify H to give a lottery design H0 with d(y) = 1. By an evident induction, this
implies the existence of the required design.

Let B = B1, . . . , Bℓ be the blocks containing y. For 2 ≤ i ≤ ℓ, find a non-isolated element
zi such that zi 6∈ Bi; this is possible since there are at least 2k non-isolated elements.
Form Ci by replacing y with zi and let C1 = B1. Then we claim we get a new (n, k, p, t; j)-
lottery design H0 = (X, C) with d0 = 0 by letting C = (B \ {B1, . . . , Bℓ}) ∪ {C1, . . . , Cℓ}.

To prove the claim, take a draw D and assume D does not intersect any block C ∈ C in
at least t elements. Then we may assume D contains y, |D ∩ Bi| = t for some 2 ≤ i ≤ l
and |D ∩ Ci| = t− 1. Furthermore, since d(x) = 1, if x ∈ D, then D ∩ B1 = D ∩ C1 has
at least t elements, so we may assume x 6∈ D. Then replacing y with x in D gives a draw
D0 which intersects no block of B in at least t elements. �

YOU NEED 27 TICKETS TO GUARANTEE A WIN ON THE UK NATIONAL LOTTERY 7

The above results are essentially the same as [BR98, Lem. 3.2, Thm. 3.5]. In between
these is [BR98, Lem. 3.4] which shows (correctly) that given an (n, k, p, 2)-lottery design
with n > k(p−2), then there is another with a maximal independent set of size p−1. It is
combined with the above two results to claim the existence of a lottery design satisfying
the conclusions of all three results. Unfortunately the methods of proof go by altering the
degrees of vertices in the design, and it is unclear whether this can be done compatibly.

We resolve this issue in Proposition 4.6 below, with a stronger result. As in op. cit., we
make use of the following lemma, which is an application of the main theorem of [Sha49].
One should also note that [BR98] implicity assumes, without proof, that the independent
set guaranteed by Lemma 4.5 can be enlarged to one of maximal cardinality; in fact,
this can actually fail, and results in a separate case to check—viz. Case (i) in Section 5.2
below.

Lemma 4.5. Let (X,B) be a k-uniform hypergraph. Then there exists an independent
set I containing at least d2

⌊3k/2⌋
vertices of degree 2.

Proposition 4.6. Suppose H = (X,B) is a segregated k-uniform hypergraph with |X| =
n, |B| = j, d1 = kr and π is the maximal order of an independent set in H. Then if

(*) 4n− jk − (3k − 2)(π − 1) + r(⌊k/2⌋ − 1)− (π − 1) · (⌊k/2⌋+ 1) > 0,

there is a (maximal) independent set I ⊆ X of order π consisting entirely of vertices
whose degrees are 1, 2 or 3 and containing at least ⌈ d2

⌊ 3k
2
⌋
⌉ vertices of degree 2.

Furthermore if the left-hand side of the inequality (*) is instead equal to zero then there
is an independent set I of order π− 1 with d(I) ∈ {1, 2}, all vertices have degree at most
4, and d2 = (π − 1− r)⌊3k

2
⌋.

Before giving the proof of the proposition, let us make some elementary observations that
are used several times in the sequel.

Let H = (X,B) be a k-uniform hypergraph with |X| = n and |B| = j. Recall di is the
number of vertices having degree i. Clearly

(1)
∑

i≥0

di = n.

Let B denote the multiset
⊔

Bi, which contains the vertices of the hypergraph counted
with their multiplicities in the blocks B. As there are j blocks we have |B| = jk. Of
course a vertex x will occur in exactly d(x) of the blocks, and so:

(2)
∑

i≥1

idi = jk.

Proof of Proposition 4.6. Suppose for a contradiction that there is no independent set I
of order π with d(I) ⊂ {1, 2, 3}. We will show this leads to a contradiction.

For a given independent set I, we denote by δi = d−1(i) ∩ I the number of elements of
degree i in I. By Lemma 4.5 there exists an independent set with

(3) δ2 ≥
d2

⌊3k
2
⌋
.

8 CUSHING AND STEWART

Let J be the union of this set together with one element chosen from each of the r isolated
blocks. Now take I ⊇ J maximal subject to d(I) ≤ 3; therefore δ1 + δ2 + δ3 ≤ π − 1.
Note that by segregation, the δ1 = r isolated I-blocks account for all elements in X of
degree 1.

We now bound from above and below the number d2+ d3 of vertices in X having degrees
2 or 3.

Since I is maximal, we have X =
⋃

BI . By segregation, no vertex of degree 2 or 3 is
adjacent to a vertex of degree 1 and so it must live in

⋃

Bx, with x running over the
elements of I of degree 2 or 3. The latter contains at most (2k−1)δ2+(3k−2)δ3 distinct
elements. Using δ1 + δ2 + δ3 ≤ π − 1, we get

d2 + d3 ≤ (2k − 1)δ2 + (3k − 2)δ3(4)

≤ (2k − 1)δ2 + (3k − 2)(π − 1− r − δ2)(5)

≤ (1− k)δ2 + (3k − 2)(π − 1− r)(6)

On the other hand, consider the multiset B =
⊔

B∈B B, of order jk. The I-blocks
contribute exactly δ1k+2δ2k+3δ3k of these elements. Since there are 2d2+3d3 elements
of degrees 2 or 3, there are 2δ2k + 3δ3k − 2d2 − 3d3 elements of B of order at least 4
coming from the I-blocks. The remaining (j− δ1 − 2δ2− 3δ3)-blocks all contain elements
of order at least 4. Thus the multiset |B≥4| of all elements of degrees 4 and above has
order

|B≥4| = (j − δ1 − 2δ2 − 3δ3)k + 2δ2k + 3δ3k − 2d2 − 3d3 = jk − rk − 2d2 − 3d3.

Since |B≥4| =
∑

i≥4 idi, we get

(7)
∑

i≥4

di ≤
jk − rk − 2d2 − 3d3

4
.

Now n =
∑

di ≤ rk + d2 + d3 +
jk−rk−2d2−3d3

4
.

Rearranging, we get:

(8) d2 + d3 ≥ 4n− jk − d2 − 3rk,

which combines with (6) to give

(1− k)δ2 + (3k − 2)(π − 1− r) ≥ 4n− jk − d2 − 3rk.

Now using Eq. (3) we get

δ2 · ⌊3k/2⌋ − (k − 1)δ2 ≥ 4n− jk − (3k − 2)(π − 1)− 2r.

Using δ1 + δ2 ≤ π − 1, with equality if and only if δ3 = 0, then after some manipulation,
we get

4n− jk − (3k − 2)(π − 1) + r(⌊k/2⌋ − 1)− (π − 1) · (⌊k/2⌋ + 1) ≤ 0,

which is a contradiction, proving the first statement of the proposition.

If 4n − jk − (3k − 2)(π − 1) + r(⌊k/2⌋ − 1) − (π − 1) · (⌊k/2⌋ + 1) = 0 then we must
have had equality in all the previous inequalities that were used, including Eq. (3). Thus,
δ2⌊3k/2⌋ = d2, δ3 = 0, π − 1 = δ1 + δ2 and all vertices are degree at most 4. �

The following results are all used to give constraints to Prolog. The first two respectively
bound above and below the number of isolated blocks.

YOU NEED 27 TICKETS TO GUARANTEE A WIN ON THE UK NATIONAL LOTTERY 9

Lemma 4.7. Let (X,B) be a segregated (n, k, p, 2; j)-lottery design. Suppose that B has
r isolated blocks. Then,

r ≥

⌈

2n− jk

k

⌉

.

Proof. We have jk = d1 +
∑

i≥2 idi ≥ d1 + 2(n− d1). Write d1 = rk and rearrange to get
the formula above. �

Lemma 4.8. Let H = (X,B) be a segregated (n, k, p, t; j)-lottery design with at least r
isolated blocks. Then

r ≤ j − L(n− rk, k, p− r, t).

Proof. Suppose B1, . . . , Br are isolated and let Y = X \
⋃

1≤i≤r Bi be the set of non-
isolated vertices and C = B \ {B1, . . . , Br}; so (Y, C) is a hypergraph with order n − rk
and size j− r. Fix one vertex vi ∈ Bi for each i. For any choice {vr+1, . . . , vp} of vertices
from Y , the draw D = {v1, . . . , vp} intersects with some B ∈ B in at least t vertices.
Clearly we cannot have B = Bi for 1 ≤ i ≤ r and so B ∈ C. But this means no v1, . . . , vr
is in B, so B must match t of the remaining p − r elements of D. Hence (Y, C) is an
(n− rk, k, p− r, t; j − r)-lottery design, which implies the inequality as shown. �

Proposition 4.9. Let H be a segregated k-uniform hypergraph. Then

d2 ≥ 3n− 2rk − jk

Proof. We recall
∑

di = n and
∑

idi = jk, which implies

jk − n = d2 +
∑

i≥3

(i− 1)di ≥ d2 + 2
∑

di = −2d1 − d2 + 2n. �

Lemma 4.10. Let (X,B) be a k-uniform hypergraph with maximal independent set I.
Then

|BI | ≥

⌈

n− p+ 1

k − 1

⌉

.

Proof. We must have
⋃

BI = X or I is not maximal. For x ∈ I, two blocks B,C ∈ Bx

intersect in at least x so |
⋃

Bx| ≤ (k − 1)|Bx| − 1. Since |I| ≤ p− 1, then summing over
x ∈ I yields the statement of the lemma. �

4.3. Excess, toes and webbings. For the values of (n, k, p) under consideration, one
tends to find L(n, k, p, 2) ∼ n/2. Thus, on average, the degree of a vertex in an (n, k, p, 2)-
lottery design is about 2. The next definition follows [BR98] with a view to bounding
the extent of departure from this average value.

Definition 4.11. For a set of vertices Y ⊂ X, the excess of Y is the sum

E(Y) =
∑

i>2

(i− 2) · |d−1(i) ∩ Y |.

Note that if Y = X , we get E(X) =
∑

i>2(i − 2) · di. The following gives an easy
characterisation of E(X).

10 CUSHING AND STEWART

Lemma 4.12. Let H = (X,B) be a segregated hypergraph with r isolated blocks. Then

E(X) = jk + rk − 2n.

Proof. We have jk =
∑

idi. Since n =
∑

di, we get

jk − 2n = −d1 +
∑

i≥3

(i− 2)di = −d1 + E(X). �

The possible number of toes are constrained by the value of the excess E(X), in a manner
we now describe. First, the following is [BR98, Lem. 4.7] after the removal of a significant
typo.

Lemma 4.13. Let (X,B) be a segregated (n, k, p, 2; j)-lottery design with maximal inde-
pendent set I and FI its I-foot. Suppose further that B has r isolated blocks. Then,

|FI | ≥ 2n− 2p+ 2− (k − 1)(|BI |+ r).

Proof. As I is maximal, we have
⋃

BI = X . The multiset

R :=
⊔

x∈I,d(x)>1,B∈Bx

B \ {x}

contains the kj − rk − |I| vertices which are neither isolated nor contained in I, and
by definition, the toes are the elements of multiplicity 1 in R. Therefore each of the
remaining kj − rk − |I| − |FI | vertices appears at least twice in R. Since |R| = (k −
1)(|BI | − r), we have

|FI |+ 2(n− rk − (|I| − r)− |FI |) ≤ (k − 1)(|BI | − r).

Rearranging and using |I| ≤ p− 1, we get the inequality as claimed. �

Now suppose x ∈ I for I a maximal independent set, with Fx a set of x-toes. Let us
assume

(*) |Fx| ≥ k.

Then it follows there are at least two blocks B,C ∈ Bx, say, containing (necessarily
distinct) x-toes; say y ∈ B and z ∈ C. If y and z were not adjacent, then replacing x
with y, z in I would yield a larger independent set, a contradiction. Thus there is a block
W with y, z ∈ W . We refer to such blocks as webbings. Formally, W is an x-webbing if
W 6∈ BI and W contains distinct x-toes; the set of x-webbings is later denoted W(x).
Note that under the assumption (*), each toe appears at least once in a webbing, so that
it must have degree at least 2.

More precisely, suppose there are τi toes in distinct x-blocks Bi with τ1 ≥ τ2 · · · ≥ τs ≥ 1.
Then each of the

∑

i<j τiτj pairs of toes must appear in some webbing. In the case k = 6

and |Fx| ≥ 7, one can see that some toes must have degree at least 3, for example. This
implies non-trivial lower bounds on the excess E(Fx) ≤ E(X).

Lemma 4.14. Let x ∈ X with x of degree 2 or 3 and suppose Fx is its x-foot; that is, Fx

the set of all vertices occuring just once in the star of x. The table below gives minimum
values of E(Fx) in terms of |Fx|.

YOU NEED 27 TICKETS TO GUARANTEE A WIN ON THE UK NATIONAL LOTTERY 11

|Fx| ≤ 5 6 7 8 9 10 11 12 13 14 15
min(E(Fx)) 0 0 2 3 7 10 11 12 20 25 27

.

If, moreover, Fx is known to contain no elements of degree 2, then min(E(Fx)) ≥ |Fx|.

Proof. For the second statement of the lemma, just observe that any x-toe of degree at
least 3 contributes at least 1 to E(Fx).

For the table itself, suppose |Fx| = τ1+τ2+τ3 is a partition of |Fx| into summands of size
at most 6. If |Fx| ≤ 6, then one webbing W suffices to cover all toes, and so the minimum
possible excess of 0 is a achieved by a configuration of x-blocks and one webbings in which
each toe appears just twice. Otherwise suppose there are w > 1 webbings, containing
each of the τ1τ2 + τ1τ3 + τ2τ3 pairs of toes, so that

⌈

τ1τ2 + τ1τ3 + τ2τ3
3

⌉

.

is an upper limit for w.

We used the immensely powerful linear programming solver Gurobi to solve the following
problem. let M be a w× |Fx|-matrix of variables taking values in 0 and 1, with the rows
representing webbings and a 1 appearing in the (i, j)-th entry if a toe labelled j is in the
ith webbing. Since |Fx| > 6, we know that toe j appears once in the x-blocks and at least
once in the webbings, so E(Fx) + |Fx| is the sum S of all entries of the M . Furthermore,
the rows of M must all sum up to integers less than or equal to k = 6, and columns j1
and j2 must have scalar product at least 1 whenever j1 and j2 come from different parts
of the partition

{1, . . . , n} = {1, . . . , τ1} ∪ {τ1 + 1, . . . , τ1 + τ2} ∪ {τ1 + τ2 + 1, . . . , τ1 + τ2 + τ3}.

We ask Gurobi to minimise the sum S subject to these constraints, and it results in the
table in the lemma.

Since Gurobi only gives answers up to a percentage accuracy, its output does not amount
to a proof of optimality, and so we wrote some Prolog code to check that the values of
min(Fx) one below those in the table are infeasible. �

Remark 4.15. This improves the bound in [BR98, Table 1] for min(|Fx|) when |Fx| = 13
from 16 to 20. Since Gurobi outputs a feasible configuration of webbings for each value
of |Fx|, we know that the minima can be achieved.

5. Proof of the theorem

5.1. SICStus Prolog code. The code in Appendix Section A—also available at github.com/cushydom88/‘lottery-problem—
implements the constraints described in the previous section. We give a description of
the strategy and its functionality.

One first loads SICStus Prolog and consults the file lottery.pl through the command

?- ['$PATH_TO_DIRECTORY/lottery.pl'].

Then one queries Prolog at the command line by asking it to solve for variables in a
(conjunction) of predicates. The following is an example of the output produced from
the main predicate:

The principal predicates are:

github.com/cushydom88/`lottery-problem

12 CUSHING AND STEWART

| ?- lottery_numbers_in_range(50,52).

% L(50,6,6,2) = 19

% L(51,6,6,2) = 20

% We conjecture that L(52,6,6,2) = 21 and must rule out the following cases

% d_2 <= 36 and \delta(I) = [2,2,2,2,3]

Figure 2. Example output

lottery_numbers_in_range(NMin,NMax). This predicate writes output to the terminal of
the form given in Fig. 2; i.e. it works sequentially with n from the value of NMin to the
value of NMax either outputting a line stating the value of L(n, 6, 6, 2) or a conjectured
value of it, which is correct modulo a list of cases to be checked by hand. The first
case is computed from scratch, using a lower bound of 1 but then in order to reduce
unnessary computation, it passes the (conjectured) value of L(n, 6, 6, 2) as a lower bound
for L(n + 1, 6, 6, 2), using Lemma 4.2.

upper_bound(N,Guess,UB) is called by the previous predicate, and it holds when Guess

equals L(N−1, 6, 6, 2) and UB is an upper bound for L(N, 6, 6, 2). The predicate considers
the list of upper bounds for sizes of covering designs in Table 1 searching for, initially
whether Guess can be achieved as a sum of such values according to Lemma 4.1, or
increases Guess until it can.

In many cases, one finds that the (conjectured) value of L(n − 1, 6, 6, 2) coincides with
the value UB. In that case, by Lemma 4.2, we conclude immediately L(n, 6, 6, 2) = L(n−
1, 6, 6, 2) modulo any previous cases that require checking by hand.

Otherwise, further predicates are engaged to establish when the hypotheses of Proposi-
tion 4.6 can fail and otherwise compute possible vectors δ(I) satisfying the conclusions of
Proposition 4.6. We start by using the predicate r_bound to give lower and upper bounds
for r = d1/k using, respectively, Lemma 4.7 and Theorem 1.1 together with Lemma 4.8.

get_slim_I_exceptions(N,UB,R,PossSlimIException). For brevity, say an independent set
is slim if it is of maximal cardinality and its component vertices have degrees at most
3. Then get_slim_I_exceptions is true when R is a possible value of r from rbound and
Proposition 4.6 does not imply the existence of a slim independent set. In that case,
the variable PossSlimIException is bound to a pair (r, (a, b)), indicating the value of r
and an interval a ≤ d2 ≤ b where a is taken from Proposition 4.6 and b comes from
Eq. (3). Any feasible values for PossSlimIException are sent to user output. Otherwise
get_min_num_Iblocks(N,MinNumIBlocks) binds MinNumIBlocks to the value implied by
Lemma 4.10 and it is passed to the next predicate along with n, the upper bound from
above, and queried for each feasible value of r.

get_deltaI_exceptions(N,UB,MinNumIBlocks,R,Deltas) binds Deltas to a list of possible
tuples δ(I) which are constrained by the following:

(1) the first r elements of δ(I) are 1;
(2) the next s elements of δ(I) are each 2, where s is determined by the lower bound

Proposition 4.9 combined with Eq. (3).
(3) the remaining p− 1− r − s elements are either 2 or 3;
(4) the number of I-blocks is at least the minimum already described.

Finally, for each feasible value of r and feasible sequence δ(I) in Deltas, we solve a
constraint problem to determine the number and distribution of toes among I-blocks

YOU NEED 27 TICKETS TO GUARANTEE A WIN ON THE UK NATIONAL LOTTERY 13

subject to their contribution to the excess E(X) as implied by Lemma 4.14. Since r is
known, the value E(X) can be computated from Lemma 4.12 and get_base_excess binds
BaseExcess to this value.

can_populate_toes_in_Iblocks(N,R,BaseExcess,Delta). This creates and a binds a variable
MinToes to the lower bound supplied by Lemma 4.13. Since any vertex in I of degree at
least 3 contributes 1 to E(X), the contribution to the excess E(X) from toes must be at
most E(X) − δ3, where δ3 = |d−1(3) ∩ I|. Hence a variable Excess is created and bound
to BaseExcess-NumThrees. This information is passed to the final predicate with the 1s
stripped from ∆ to give the sequence DeltaNoOnes.

populate_toes_in_Iblocks(DeltaNoOnes,MinToes,Excess,Vs) solves the following constraint
problem:

(1) J = {xr+1, . . . , xp−1} ⊆ I is the subset of I of vertices of degree at least 2, such
that δ(J) is bound to DeltaNoOnes;

(2) Vs is a sequence of variables representing τ(J); so the total number of toes
∑

τ(J)
represented by sum(Vs) is at least the calculated bound MinToes;

(3) given the values of d(xi) and τ(xi), the sum over r+1 ≤ i ≤ p−1 of the minimum
excesses implied by Lemma 4.14 is at most Excess.

Any solutions for the variables Vs together with the choice of Delta are outputted for
manual checking.

5.2. The remaining cases. The output from compute_lottery_numbers_in_range(30,61)

tells us that we must consider separately the following cases:

(1) n = 54, j = 22, d2 ≤ 36, δ(I) = (2, 2, 2, 2, 3);
(2) n = 54, j = 22, d2 ≤ 18, δ(I) = (1, 2, 2, 3, 3);
(3) n = 57, j = 24, d2 ≤ 27, δ(I) = (2, 2, 2, 3, 3);
(4) n = 58, j = 25, d2 ≤ 27, δ(I) = (2, 2, 2, 3, 3);

And for n = 59, we must rule out the following cases for j = 26:

(i) d1 = 0, d2 = 36;
(ii) d2 ≤ 9, δ(I) = (1, 2, 3, 3, 3);
(iii) d2 ≤ 27, δ(I) = (2, 2, 2, 3, 3);

In the next three subsections, we treat the cases for n = 59; the cases where n < 59 are
similar and easier.

Case (i). In this case, we have d2 = 36 and so we cannot apply Proposition 4.6 in order to
get a maximal independent set of order 5. However, by Eq. (3), we do get an independent
set I0 = {x1, . . . , x4} with δ(I0) = (2, 2, 2, 2). But then the 8 blocks of BI0 supply at most
44 elements, so we can enlarge I0 to a maximal independent set I = I0 ∪ {x5}. Since
the Prolog query did not flag up the cases where δ(I) = (2, 2, 2, 2, 2) or (2, 2, 2, 2, 3), we
may assume d(x5) ≥ 4. Furthermore, all vertices of degree 2 or 3 must appear in a block
of BI0 , or we could have chosen x5 of degree 2 or 3. Since there are at most 44 distinct
vertices in these blocks, we have d3 ≤ 8.

14 CUSHING AND STEWART

Now, the number of elements d≥4 of degree at least 4 is d≥4 = 59 − 36 − d3 = 23 − d3.
Hence,

156 =
∑

idi ≥ 2 · 36 + 3 · 8 + 4 · (23− d3),

whence 84 ≥ 3 · d3 + 4 · (23− d3).

Therefore d3 ≥ 8, which gives d3 = 8, d4 = 15 and d(x5) = 4. Consequently, the elements
of order 4 cannot appear in any blocks of BI0 so must each appear at least once in the
blocks Bx5

, which can contain a maximum of 21 distinct elements, so that there are at
most 6 vertices in Bx5

with degree 2 or 3. This shows that there must be at least 34
I-toes coming from vertices in blocks of BI0. Checking Lemma 4.14, it is easy to see that
E(
⋃

BI0) > 8 which implies there are at least 9 vertices of degree 3, a contradiction.

Case (ii). Here we assume

δ(I) = (1, 2, 3, 3, 3),

with I = {x1, . . . , x5} and that there is no independent set J with δ2(J) > 1. In particular,
every vertex of degree 2 appears in a block with every other.

By Proposition 4.9, we have d2 ≥ 9, hence d2 = 9. Furthermore we have d1 = 6 so

156 ≥ 6 + 2 · 9 + 3 · d≥3

with d≥3 = 44. Hence we have equality above and d≥3 = d3 = 44. If y ∈ B ∈ Bxi
with

i > 2, d(y) = 2, then there is another independent set J ⊂ X with δ(J) = (1, 2, 2, 3, 3),
a contradiction. So all elements of degree 2 are contained in the blocks {B1, B2} = Bx2

.
The multiset Bx2

= B1 ⊔ B2 has 10 elements not equal to x2. Now, 8 of these must be
the remaining vertices of degree 2, so there are at least 6 occurring just once. In other
words Fx2

has at least 6 toes of degree 2. Suppose τ1 of these appear in B1 and τ2 appear
in B2. Since τ1 + τ2 ≥ 6 we see τ1, τ2 > 0. This tells us that all these toes must lie in a
single webbing. It follows that τ1+ τ2 = 6 and so there are exactly 6 toes in Fx2

, meaning
that the remaining 2 vertices of degree 2 both appear twice.

Returning to the output of the Prolog code

?- populate_toes_in_Iblocks([2,3,3,3], 43, 41, Vs), labeling([], Vs).

Vs = [7,12,12,12] ? ;

Vs = [8,11,12,12] ? ;

Vs = [8,12,12,12] ? ;

Vs = [9,10,12,12] ? ;

Vs = [9,11,11,12] ? ;

no

we conclude only the first possibility can hold. Hence the 43 toes are divided between
the xi-blocks in proportion 6, 12, 12 and 13 for 2 ≤ i ≤ 5. Now from Lemma 4.14 we see
that if Fx = 13 then E(Fx) ≥ 16. But if every y ∈ Fx had d(y) ≤ 3 then E(Fx) ≤ 13.
Thus some d(y) ≥ 4, a contradiction.

Case (iii). Here we assume d2 ≤ 27 and

δ(I) = (2, 2, 2, 3, 3),

with I = {x1, . . . , x5} and that any independent set J with degrees in {2, 3} has δ(J) =
δ(I). In particular, every vertex of degree 2 appears in

⋃

B{x1,x2,x3} and appears in no
block of B{x4,x5}.

YOU NEED 27 TICKETS TO GUARANTEE A WIN ON THE UK NATIONAL LOTTERY 15

By Proposition 4.9, we have d2 ≥ 21, and Lemma 4.13 implies |FI | ≥ 48. Prolog informs
us of the following possibilies for τ(I):

?- populate_toes_in_Iblocks([2,2,2,3,3], 48, 36, Vs), labeling([], Vs).

Vs = [7,8,9,12,12] ? ;

Vs = [8,8,8,12,12] ? ;

Vs = [8,8,9,11,12] ? ;

no

These solutions lead to E(FI) ≥ 36 except for τ(I) = (8, 8, 8, 12, 12) which implies only
E(FI) ≥ 33. Let us rule out the cases where E(FI) ≥ 36.

Any toe y ∈ FI occurs once in the blocks of BI and all other occurrences are in blocks not
in BI . Let di,τ denote the number of toes having degree i. Then counted with multiplicy
in B, the toes account for T =

∑

i≥2 idi,τ elements of B. We have E(FI) =
∑

(i− 2)di,τ ,
and

∑

di,τ =: nτ is the number of toes. So T = E(FI) + 2 · nτ and exactly nτ of these
entries come from FI , so there are E(FI) + nτ ≥ 48 + 36 = 84 elements lying in blocks
not in BI . But 84/6 = 14 so there are at least 14 blocks not lying in BI . Since |BI | = 12
and |B| = 26, this exhausts B, implies nτ = 48, that

(†) E(FI) = 36 =
∑

1≤i≤5

E(Fxi
),

and that the blocks B \ BI contain only toes.

Consider Fx2
, which, by (†) contributes exactly 3 to E(FI). It is easy to see that this

means there must be 5 toes in B and 3 toes in C, say, where {B,C} = Bx2
; also that

there are exactly two x2-webbings B′ and C ′. Let us label the vertices of B and C as
B = {x2, 1, 2, 3, 4, 5}, C = {x2, 6, 7, 8, , }. Then up to an action of S5 × S3 permuting
the toes, we may write B′ = {1, 2, 3, 6, 7, 8} and C ′ = {4, 5, 6, 7, 8, z}, where z is as yet
undetermined. But since C ′ 6∈ BI it follows that z is a toe. We cannot have z ∈ {1, . . . , 8}
since that would imply E(Fx2

) > 3. Therefore z ∈ Fxi
for i 6= 2. But as |Fxi

| ≥ k = 6,
each xi-toe must already appear once in Bxi

and again in some D ∈ B \ Bi with some
other xi-toe. We conclude D 6= C ′ and so C ′ is not a webbing of xi-toes. Since the
webbings of xi-toes account entirely for the occurrences of the xi-toes outside of BI , we
reach a contradiction.

Therefore we must have E(X) < 36 and so τ(I) = (8, 8, 8, 12, 12). We use a similar
counting argument as above: for x = x4 or x5, we have |Fx| = 12 and these incur an
excess E(Fx) ≥ 12. It follows that these 12 x-toes must appear at least 24 times in the
webbings W(x). This implies that |W(x)| ≥ 4 and if equality holds, then

⋃

W(x) consists
entirely of x-toes; moreover a closer inspection of the solutions found by Gurobi implies
that the toes are distributed in such a way as to have 4 in each x-block. Similarly, if
x ∈ {x1, x2, x3} then |W(x)| ≥ 2 and in the case of equality, there is at most 1-non-toe in
⋃

(W(x)). Since
∑

x∈I |W (x)| ≥ 14 and there are 12 I-blocks, we do indeed have equality
everywhere.

Consequently, there are 59−5−48 = 6 vertices which are neither in I nor I-toes. Consider
the draw D comprising these 6 elements. We have by assumption that D∩B has at least
2 elements for some B ∈ B. But by the above remarks, we cannot have B ∈ W(x) for
any x ∈ I, since such a B contains at most 1 non-x-toe; equally we cannot have B ∈ Bx

for x ∈ {x4, x5} as B \ {x} has at most 1 non-x-toe. Therefore B ∈ Bx1
= {E, F},

say and that there are 3 toes and 2-non-toes in E and 5 toes in F . Let us therefore

16 CUSHING AND STEWART

label E = {x1, 1, 2, 3,−1,−2}, F = {x1, 4, 5, 6, 7, 8}, D = {−1,−2,−3,−4,−5,−6},
accordingly. Up to S3×S5 symmetry, we haveW(x) = {B′, C ′} with B′ = {1, 2, 3, 4, 5, 6},
C ′ = {1, 2, 3, 7, 8, }. Therefore all the pairs {−1,−2}×{4, 5, 6} are non-adjacent. Being
toes, none of 4, 5 or 6 can appear in a block of Bx2

or Bx3
and furthermore, there is

just one space in W(x2) and W(x3) where any of {4, 5, 6} could appear. Without loss of
generality, then, 4 is no block in Bx2

,Bx3
,W(x2),W(x3).

Now consider the draw D1 = {4,−2,−3,−4,−5,−6}, which must intersects a block B1

in Bx2
= {B1, C1} say, in at least 2 places. Without loss of generality, we have either B1 =

{x2, 9, 10, 11,−2,−3} or B1 = {x2, 9, 10, 11,−3,−4} and C1 = {x2, 12, 13, 14, 15, 16}. In
a similar to manner to before, we may assume 12 does appear in any of Bxi

,W(xi) for
i ∈ {1, 3}.

Now let D2 = {4,−2, 12,−4,−5,−6}. Again, D2 intersects a block which must be in
Bx3

= {B3, C3}, say, in a similar configuration of containing 3 and 5 toes, respectively.
Label B3 = {x3, 17, 18, 19,−5,−6}: the other cases are similar or easier. Writing C3 =
{x3, 20, 21, 22, 23, 24}, and assuming 20 does not appear in Bxi

or W(xi) for i ∈ {1, 2},
we finally set D3 = {4,−2, 12,−4, 20,−6}. By construction this does not intersect any
other block in at least 2 places, and leads to a final contradiction.

This completes the proof of the main theorem.

6. Configurations for other lottery designs

Tickets of size 6 are represented in the diagrams of Fig. 3 by concatenating the labels over
the vertices in each line. These sets of blocks can be combined to give (n, 6, 6, 2; x)-lottery
designs. For example our (59, 6, 6, 2; 27)-lottery design from Section 2 has configuration
(B,C,E,E,E).

Theorem 6.1. Table 2 lists j = L(n, 6, 6, 2) together with configurations described in
Fig. 3 which afford an (n, 6, 6, 2; j)-lottery design.

n L(n, 6, 6, 2) Configuration
32 7 (A,A,A,A,B)
33 7 (A,A,A,A, C)
34 7 (A,A,A,A,D)
35 9 (A,A,A,B, C)
36 9 (A,A,A, C, C)
37 10 (A,A,A, C,D)
38 11 (A,A,A,A,E)
39 11 (A,A,C, C, C)
40 12 (A,A,C, C,D)
41 13 (A,A,A, C,E)
42 13 (A,C, C, C, C)
43 14 (A,C, C, C,D)
44 15 (A,A,C, C,E)
45 15 (C,C, C, C, C)
46 16 (C,C, C, C,D)

n L(n, 6, 6, 2) Configuration
47 17 (A,C, C, C,E)
48 18 (A,C, C,D,E)
49 19 (A,A,C,E,E)
50 19 (A,A,A,A,E)
51 20 (A,A,A,D,E)
52 21 (A,C, C,E,E)
53 22 (A,C,D,E,E)
54 23 (A,A,E,E,E)
55 23 (C,C, C,E,E)
56 24 (C,C,D,E,E)
57 25 (A,C,E,E,E)
58 26 (A,D,E,E,E)
59 27 (B,C,E,E,E)
60 27 (C,C,E,E,E)
61 28 (C,D,E,E,E)

Table 2. Lottery numbers and their configurations

YOU NEED 27 TICKETS TO GUARANTEE A WIN ON THE UK NATIONAL LOTTERY 17

1,2,3 4,5,6

(1,2,3,4,5,6)

(A)

5,6 7,8

3,4

1,2

{∅}

(B)
(1,2,3,4,5,6)
(1,2,3,4,7,8)
(1,2,5,6,7,8)

4,5,6 7,8,9

1,2,3
(1,2,3,4,5,6)
(1,2,3,7,8,9)
(4,5,6,7,8,9)

(C)

1,2

3,4

5,6

7,8

9,10

(D)

(1,2,3,4,9,10)
(1,2,5,6,9,10)
(1,2,7,8,9,10)
(3,4,5,6,7,8)

9,10 13,14

1,2

7,8

11,12

5,63,4

(E)

(1,2,3,4,9,10)
(1,2,5,6,13,14)
(1,2,7,8,11,12)
(3,4,5,6,11,12)
(3,4,7,8,13,14)
(5,6,7,8,9,10)
(9,10,11,12,13,14)

Figure 3. Ticket configurations

18 CUSHING AND STEWART

Appendices

A. Main Prolog code

:-use_module(library(clpfd)).

:-use_module(library(lists)).

:-use_module(library(ordsets)).

:-use_module(library(ugraphs)).

:-use_module(library(between)).

% ['lottery.pl'].

% compute_lottery_numbers_in_range(30,61).

%%% COMPUTE LOTTERY NUMBERS IN A RANGE %%%

% Given Nmin and Nmax try to compute L(n,6,6,2) for Nmin <= n <= Nmax.

% The value of L(n,6,6,2) is passed in to the computation of L(n+1,6,6,2)

compute_lottery_numbers_in_range(Nmin, Nmax) :-

PrevLottoNum #= 1,

compute_lottery_numbers_in_range2(PrevLottoNum, Nmin, Nmax).

compute_lottery_numbers_in_range2(PrevLottoNum, N, Nmax) :-

N #= Nmax,

possible_lottery_number(N, PrevLottoNum, _).

compute_lottery_numbers_in_range2(PrevLottoNum, N, Nmax) :-

N #\= Nmax,

possible_lottery_number(N, PrevLottoNum, NewLottoNum),

NewN #= N + 1,

compute_lottery_numbers_in_range2(NewLottoNum, NewN, Nmax).

%%%%%%

%%% POSSIBLE LOTTERY NUMBER %%%

possible_lottery_number(N, PrevLottoNum, UB) :-

% first calculate the upper bound

upper_bound(N, PrevLottoNum, UB),

possible_lottery_number2(N, PrevLottoNum, UB).

possible_lottery_number2(N, PrevLottoNum, UB) :-

PrevLottoNum #= UB,

print_message(informational, format(' L(~w,6,6,2) = ~w ',[N,UB])).

possible_lottery_number2(N, PrevLottoNum, UB) :-

PrevLottoNum #\= UB,

% Calculate an upper bound on d1

bound_isolated_blocks(N, UB, Rs),

get_min_num_Iblocks(N, MinNumIBlocks),

% get any exceptions for constructing a slim I

maplist(get_slim_I_exceptions(N, UB), Rs, PossSlimIExceptions),

include(interval_check, PossSlimIExceptions, SlimIExceptions1),

% get Delta(I) exceptions

maplist(get_deltaI_exceptions(N, UB, MinNumIBlocks), Rs, DeltaExceptionsList)

,

append(DeltaExceptionsList, DeltaExceptions),

write_lotto_result(SlimIExceptions1, DeltaExceptions, N, UB).

%%%%%%

%%% D1 UPPER BOUND %%%

bound_isolated_blocks(N, UB, PossD1s) :-

get_r_min(N, UB, D1Min),

YOU NEED 27 TICKETS TO GUARANTEE A WIN ON THE UK NATIONAL LOTTERY 19

include(bound_isolated_blocks_helper(N, UB, D1Min), [0,1,2,3,4], PossD1s).

bound_isolated_blocks_helper(_, _, D1Min, 0) :-

D1Min #< 1.

bound_isolated_blocks_helper(N, UB, D1Min, R) :-

R #> 0,

D1Min #=< 6*R,

P #= 6 - R,

LB #= UB - R,

M #= N - 6 * R,

furedi_lower_bound(Vs, M, 6, P, LB),

labeling([], Vs).

get_r_min(N, UB, D1Min) :-

T #= 2*N - 6*(UB - 1),

T #=< 0,

D1Min #= 0.

get_r_min(N, UB, D1Min) :-

T #= 2*N - 6*(UB - 1),

T #> 0,

D1Min #= T.

%%%%%%

%%% COVERING DESIGN UPPER BOUND %%%

% Start with a guess for the upper bound and increase the guess until a solution

is found

upper_bound(N, Guess, UB) :-

findall(Vs, (test_upper_bound(Vs, N, Guess), labeling([], Vs)), Sols),

upper_bound2(N, Guess, Sols, UB).

upper_bound2(N, Guess, [], UB) :-

Guess2 #= Guess + 1,

upper_bound(N, Guess2, UB).

upper_bound2(_, Guess, Sols, UB) :-

length(Sols, KK),

KK #>= 1,

UB #= Guess.

test_upper_bound(Vs, N, UB) :-

length(Vs, 5),

domain(Vs, 1, 65),

M is N - 25,

sum(Vs, #=, M),

get_covering_design_nums(Vs, Scores),

sum(Scores, #=<, UB),

sorting(Vs,[1,2,3,4,5],Vs).

get_covering_design_nums(Vs, Scores) :-

Vals = [1,3,3,3,4,

6,6,7,7,10,10,12,12,15,16,

17,19,21,22,23,24,27,28,30,31,

31,38,39,40,42,47,50,51,54,55,

59,63,65,67,70,73,79,80,82,87,

90,96,98,99,105,110,114,117,119,128,

132,135,140,142,143,143,157,160,163,172],

maplist(get_covering_design_num(Vals), Vs, Scores).

get_covering_design_num(Vals, I, Score) :-

nth1(I, Vals, Score).

%%%%%%

20 CUSHING AND STEWART

%%% FUREDI LOWER BOUND %%%

furedi_lower_bound(Vs, N, K, P, LB) :-

LLB is K * LB,

NP is P - 1,

length(Vs, NP),

domain(Vs, 1, N),

sum(Vs, #=, N),

maplist(furedi_lower_bound_helper(K), Vs, Ws),

sum(Ws, #=<, LLB).

furedi_lower_bound_helper(K, X, Y) :-

((X -1) mod (K - 1)) #= 0,

Y #= X * ((X-1) / (K - 1)).

furedi_lower_bound_helper(K, X, Y) :-

((X -1) mod (K - 1)) #\= 0,

Y #= X * (1 + ((X-1) / (K - 1))).

%%%%%%

%%% SLIM I EXCEPTIONS

get_slim_I_exceptions(N, UB, R, [R, [D2Lower, D2Upper]]) :-

D2Upper #= 9 * (4 - R),

D2Lower0 #= (9*(4*N - 6*(UB-1) - 18*R - 16*(4-R))) / 4,

make_non_negative(D2Lower0,D2Lower).

interval_check([_, [A,B]]) :-A #=< B.

make_non_negative(X, Y) :-

X #< 0,

Y #= 0.

make_non_negative(X, Y) :-

X #>= 0,

Y #= X.

%%%%%%

%%% DELTA(I) EXCEPTIONS %%%

% Lower bound the number of blocks in B_I

get_min_num_Iblocks(N, Min) :-

((N - 5) mod 5) #= 0,

Min #= (N - 5)/5.

get_min_num_Iblocks(N, Min) :-

((N - 5) mod 5) #\= 0,

Min #= 1 + ((N - 5)/5).

% Find the values of Delta(I) we cannot immediately rule out

get_deltaI_exceptions(N, UB, MinNumIBlocks, R, Deltas) :-

% Lower bound how many 2s are assumed to be in Delta(I)

get_delta_two(N, UB, R, Delta2),

% Fill Delta(I) with as many 1s and 2s that can be assumed

% Then generate all ways to complete Delta(I) by adding 2s and 3s

row_of_n_ms(R, 1, L1),

row_of_n_ms(Delta2, 2, L2),

append(L1, L2, L3),

length(L3, K1),

K2 #= 5 - K1,

findall(Xs, (length(Xs, 2), domain(Xs, 0, K2), sum(Xs, #=, K2), labeling([],

Xs)), VSizes),

maplist(make_delta_end, VSizes, DeltaEnds),

maplist(append(L3), DeltaEnds, Deltas1),

YOU NEED 27 TICKETS TO GUARANTEE A WIN ON THE UK NATIONAL LOTTERY 21

% Remove out Delta(I) where |B_I| is too small

include(at_least_m_blocks(MinNumIBlocks), Deltas1, Deltas2),

% Upper bound the excess of the whole design

get_base_excess(N, R, UB, BaseExcess),

% For each possible Delta(I) consider the constraint problem of populating toes

in the IBlocks

include(can_populate_toes_in_Iblocks(N, R, BaseExcess), Deltas2, Deltas).

get_delta_two(N, UB, R, Delta2) :-

get_delta_two2(N, UB, R, PossDelta2),

make_non_negative(PossDelta2, Delta2).

get_delta_two2(N, UB, R, Delta2) :-

X #= (3*N - 12 * R - 6 * (UB - 1)),

(X mod 9) #= 0,

Delta2 #= X / 9.

get_delta_two2(N, UB, R, Delta2) :-

X #= (3*N - 12 * R - 6 * (UB - 1)),

(X mod 9) #\= 0,

Delta2 #= 1 + (X / 9).

row_of_n_ms(N, M, Row) :-

length(Row, N),

maplist(#=(M), Row).

make_delta_end([A,B], DeltaEnd) :-

row_of_n_ms(A, 2, X1),

row_of_n_ms(B, 3, X2),

append(X1, X2, DeltaEnd).

at_least_m_blocks(MinNumIBlocks, PossDelta) :-

sum(PossDelta, #>=, MinNumIBlocks).

get_base_excess(N, R, UB, BaseExcess) :-

BaseExcess #= 6*(UB-1) + 6*R - 2*N.

can_populate_toes_in_Iblocks(N, R, BaseExcess, Delta) :-

sum(Delta, #=, B),

MinToes #= 2*N - 10 - 5*(B+R),

delete(Delta, 3, Residue),

length(Residue, NumOnesAndTwos),

NumThrees #= 5 - NumOnesAndTwos,

Excess #= BaseExcess - NumThrees,

delete(Delta, 1, DeltaNoOnes),

populate_toes_in_Iblocks(DeltaNoOnes, MinToes, Excess, Vs),

labeling([], Vs).

populate_toes_in_Iblocks(DeltaNoOnes, MinToes, Excess, Vs) :-

same_length(Vs, DeltaNoOnes, N),

domain(Vs, 1, 15),

maplist(adjust_domain, DeltaNoOnes, Vs),

maplist(get_ex, Vs, DeltaNoOnes, Excesses),

sum(Excesses, #=<, Excess),

sum(Vs, #>=, MinToes),

numlist(N,L),

sorting(Vs,L,Vs).

adjust_domain(2, V) :-V #=< 10.

adjust_domain(3, _).

get_ex(V, 2, Ex) :-

22 CUSHING AND STEWART

element(V, [0,0,0,0,0,0,2,3,7,10], Ex).

get_ex(V, 3, Ex) :-

element(V, [1,2,3,4,5,6,7,8,9,10,11,12,20,25,27], Ex).

%%%%%%

%%% RESULT OUTPUT %%%

write_lotto_result([], [], N, UB) :-

print_message(informational, format(' L(~w,6,6,2) = ~w ',[N,UB])).

write_lotto_result(SlimIExceptions, DeltaExceptions, N, UB) :-

append(SlimIExceptions, DeltaExceptions, TotalExceptions),

length(TotalExceptions, Ex),

Ex #> 0,

print_message(informational, format('We conjecture that L(~w,6,6,2) = ~w and

must rule out the following cases',[N,UB])),

write_slimI_exceptions(SlimIExceptions),

write_delta_exceptions(DeltaExceptions).

write_slimI_exceptions(Exceptions) :-

maplist(write_slimI_exception, Exceptions).

write_slimI_exception([R, [D2, D2]]) :-

D1 #= 6*R,

print_message(informational, format(' d_1 = ~w and d_2 = ~w ',[D1,D2])).

write_slimI_exception([R, [D2L, D2U]]) :-

D1 #= 6*R,

D2L #\= D2U,

print_message(informational, format(' d_1 = ~w and d2 in the range [~w,~w] ',[

D1,D2L, D2U])).

write_delta_exceptions(Exceptions) :-

maplist(write_delta_exception, Exceptions).

write_delta_exception(Delta) :-

delete(Delta, 2, Residue),

length(Residue, NumNoneTwos),

NumTwos #= 5 - NumNoneTwos,

D2 #= NumTwos * 9,

print_message(informational, format(' d_2 <= ~w and \\delta(I) = ~w ',[D2,

Delta])).

writeln(Stream) :-

write(Stream),

write('\n').

%%%%%%

Acknowledgement: The authors are supported by the Leverhulme Trust Research
Project Grant number RPG-2021-080.

References

[BR98] J. A. Bate and G. H. J. van Rees. “Lotto designs”. In: vol. 28. Papers in honour of Anne
Penfold Street. 1998, pp. 15–39.

[COC97] M. Carlsson, G. Ottosson, and B. Carlson. An open-ended finite domain constraint solver.
English. Vol. 1292. Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics). 1997, pp. 191–206.

[CM12] Mats Carlsson and Per Mildner. “SICStus Prolog—the first 25 years”. In: Theory Pract. Log.

Program. 12.1-2 (2012), pp. 35–66. issn: 1471-0684. doi: 10.1017/S1471068411000482.

https://doi.org/10.1017/S1471068411000482

REFERENCES 23

[CSS22] David Cushing, George W. Stagg, and David I. Stewart. “A Prolog assisted search for new
simple Lie algebras”. In: (July 2022). eprint: 2207.01094.

[FSZ96] Zoltán Füredi, Gábor J. Székely, and Zoltán Zubor. “On the lottery problem”. In: J. Combin.

Des. 4.1 (1996), pp. 5–10. issn: 1063-8539,1520-6610.doi: 10.1002/(SICI)1520-6610(1996)4:1<5::AID-JCD2>3.3.CO;2-W.
[Run96] D. Runciman. “The Plot to Make Us Stupid”. In: London Review of Books 18.4 (Feb. 1996).
[Sha49] Claude E. Shannon. “A theorem on coloring the lines of a network.” In: J. Math. Physics

(1949), pp. 148–151.

Department of Mathematics, The University of Manchester, Manchester, UK

Email address : david.cushing@manchester.ac.uk

Department of Mathematics, The University of Manchester, Manchester, UK

Email address : david.i.stewart@manchester.ac.uk

2207.01094
https://doi.org/10.1002/(SICI)1520-6610(1996)4:1<5::AID-JCD2>3.3.CO;2-W
https://www.lrb.co.uk/the-paper/v18/n04/david-runciman/the-plot-to-make-us-stupid

	1. Introduction
	2. The 27 Tickets
	3. Definitions and notation
	4. Preliminaries
	4.1. Upper bounds
	4.2. Reductions and constraints
	4.3. Excess, toes and webbings

	5. Proof of the theorem
	5.1. SICStus Prolog code
	5.2. The remaining cases
	Case (i)
	Case (ii)
	Case (iii)

	6. Configurations for other lottery designs
	Appendices
	A. Main Prolog code
	References

