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Abstract

Aquifer depletion poses a major threat to the ability of farmers, food supply chains, and rural
economies globally to use groundwater as a means of adapting to climate variability and change. Empiri-
cal research has demonstrated the large differences in drought risk exposure that exist between rainfed and
irrigated croplands, but previous work commonly assumes water supply for the latter is unconstrained.
In this paper, we evaluate how aquifer depletion affects the resilience of irrigated crop production to
drought risk using over 30 years of data on historical corn and soybean yields, production areas, and
aquifer conditions for the High Plains region in the United States. We show that aquifer depletion reduces
the ability of farmers to sustain irrigated crop yields and production areas in years and locations with
large growing season water deficits. Our findings demonstrate that drought-related production losses
on irrigated croplands increase non-linearly with aquifer depletion, highlighting the need for proactive
aquifer conservation interventions to support adaptation and resilience to future increases in rainfall
variability under climate change.

1 Main

Groundwater is an essential input for agricultural production, providing a critical buffer against limited
or variable surface water supplies for farmers in many parts of the world [Scanlon et al., 2023]. Globally,
agriculture’s dependence on groundwater for irrigation is expected to increase in the future because of
higher crop water requirements, more erratic rainfall, and more frequent and extreme drought events
caused by climate change [Zhou et al., 2010, Wada et al., 2013, Wada and Bierkens, 2014, Kreins et al.,
2015, Florke et al., 2018]. However, many of the world’s most important aquifer systems have experienced
large reductions in storage over recent decades [Wada et al., 2010, Famiglietti et al., 2011, Scanlon et al.,
2012, Konikow, 2015, Bierkens and Wada, 2019]. If not addressed, these reductions will negatively affect
the ability of farmers, food supply chains, and rural economies to use groundwater as a means of adapting
to climate change.

Despite widespread alarm about the risks that aquifer depletion poses to crop productivity and food
security, empirical evidence is limited about how reductions in groundwater availability will alter farmers’
capacity to adapt successfully to drought and rainfall variability. Most empirical studies that have
assessed impacts of drought on agricultural productivity have focused primarily on rainfed production
areas due to the greater exposure of rainfed agriculture to drought-related shocks [Schlenker and Roberts,
2009, Lobell et al., 2014, Schlenker and Lobell, 2010, Zhou et al., 2020, Borgomeo et al., 2020]. Existing
studies also demonstrate the importance of existing irrigated areas or future irrigation intensification
and expansion to mitigate negative impacts of drought [Kuwayama et al., 2019, Zipper et al., 2016, Zhu
and Burney, 2022, Zhu et al., 2022, Lu et al., 2020, Davis et al., 2019, Li and Troy, 2018]. In contrast,



most research assessing impacts of aquifer depletion on resilience of irrigated farmland to drought has
relied on simulation modeling [Foster et al., 2015b, Cotterman et al., 2018, Kahil et al., 2015, Yoon et al.,
2021, Rouhi-Rad et al., 2020c], with more limited work that attempts to empirically evaluate change in
drought-related production losses and risks on irrigated lands as a function of changing aquifer storage
[Jain et al., 2021, Suter et al., 2021].

Two major pathways exist by which aquifer depletion will impact farmers’ ability to access and use
groundwater as a buffer against drought and rainfall variability [Foster et al., 2015a]. First, depletion
increases the energy requirements and costs of pumping water, potentially making it less economically
viable for farmers to satisfy crop water needs [Mieno and Brozovié, 2017, Bhattarai et al., 2021]. Second,
depletion also reduces the thickness of an aquifer, lowering the aquifer’s transmissivity (i.e., the potential
rate of water supply to wells). This latter effect reduces the rate at which water can be pumped and
applied to a field as irrigation [Konikow and Kendy, 2005, Foster et al., 2014, Hrozencik et al., 2017]. If
the reduction in well yields is substantial enough - for example as would occur when a large proportion of
aquifer thickness is depleted [Hecox et al., 2002, Korus and Hensen, 2020] - then a farmer may be unable
to extract sufficient water to meet crop water demands, in particular during periods of limited rainfall
and in the peak of the growing season when crops are most sensitive to water deficits [Foster et al.,
2015b, Rouhi-Rad et al., 2020a]. The combined effect of declining well yields and increasing pumping
costs could force farmers to reduce irrigation depths, resulting in greater risk of drought-related crop
stress. Alternatively, or in addition, a farmer may be forced to limit irrigated area to ensure crop water
demands can be met, leading to reductions in total crop production [Foster et al., 2014, Rouhi-Rad et al.,
2020b]. Understanding how these two responses vary as a function of aquifer conditions is crucial to guide
groundwater management planning decisions, in particular given projected increases in frequency and
intensity of droughts under climate change [Ukkola et al., 2020, Chiang et al., 2021, Cook et al., 2020].
Another potential pathway is through groundwater use regulation in response to low or declining aquifer
thickness. However, it is unlikely that this effects is captured in our analysis. For more details on this
issue, please refer to section A of the Supplementary Information.

In this paper, we present empirical evidence about how aquifer depletion affects farmers’ ability to
effectively and reliably buffer crops against drought using data on historical crop yields, production
areas, and aquifer conditions for the High Plains region in the United States. Our analysis extends
previous research on the impacts of drought on agricultural production by evaluating how drought-
related production losses are influenced by severity of groundwater scarcity, moving beyond prior binary
comparisons of rainfed and irrigated production [Schlenker and Roberts, 2009, Lobell et al., 2014, Lu
et al., 2018]. We also provide new empirical insights about the relative roles of extensive (i.e., irrigated
area) and intensive (i.e., per-area irrigation rates) margin water use adjustments in determining drought-
related production losses, which previously had only been demonstrated through theoretical modeling
[Foster et al., 2014, 2017, Rouhi-Rad et al., 2020b]. Our findings provide important evidence of the value
of preserving aquifer storage as a buffer against drought events. In doing so, our analysis adds weight
to the need to improve groundwater resource conservation and sustainability to enable adaptation to
climate change in groundwater-dependent agricultural systems globally [Jain et al., 2021, Scanlon et al.,
2023].

2 Results

2.1 Sensitivity of per-area crop yields to water deficits

Figure 1 shows the estimated crop yield response to water deficit for rainfed production and groundwater-
irrigated production at different levels of aquifer thickness categories for corn (panel A) and soybean
(panel B). Confidence intervals were not presented to avoid over-crowding the figures. Please see section
B of the Supplementary Information for estimated yield response curves with 95 percent confidence
interval. The histogram of annual water deficit is presented at the top for each crop. In wetter years
with low crop irrigation requirements (i.e., negative values of water deficit), rainfed and irrigated yields
are very similar for both corn and soybean. As drought severity increases (i.e., as water deficit increases),
rainfed yields of both crops decline significantly whereas irrigated yields are increasing or stable as deficit
increases (see Figures S.1 and S.2 for the 95% confidence intervals). This result reflects the positive
benefits irrigation provides both as a buffer against precipitation variability, and as a means of raising
overall yields through increased evapotranspiration and associated biomass accumulation, reductions of
heat-related stressors, and other factors [Zhu and Burney, 2022, Li et al., 2020].

We now focus on comparing yield response to water deficit among the three aquifer thickness categories



(all irrigated). First, for water deficits above around 400mm, yield changes become negative for counties
with the lowest levels of aquifer thickness (i.e., 1st quantile in Figure 1). This likely reflects the restrictions
that lower aquifer thickness and associated reductions in well yields place on farmers’ ability to fully meet
crop water requirements during periods of more severe or extended water deficits [Rouhi-Rad et al., 2020b,
Foster et al. [2014]; Hrozencik et al., 2017]. In contrast, yield continues to increase gradually as water
deficit increases beyond 400 mm for counties with the highest level of aquifer thickness.

Figure 2 shows the difference in yield of the second and third (highest) aquifer quantiles relative to
the first (lowest) quantile with the 95% confidence interval for corn and soybean. For corn, in years
with water deficit greater than about 700 mm, the highest aquifer thickness group has statistically
significantly higher yields than the lowest aquifer thickness group. At an extreme water deficit level of
950 mm (average water deficit in 2012, the most extreme drought in our historical record), the difference in
yields between the smallest and largest aquifer thickness groups is 1.31 tonne/ha. Unlike corn, irrigated
soybean yields are not statistically distinguishable among the three aquifer thickness groups. This is
likely because soybean is not as water demanding a crop as corn, meaning that even counties with lower
aquifer thickness can meet the majority of crop water demands as well yield is not a significantly binding
constraint on irrigation management decisions.

2.2 Share of agricultural land under irrigation

While aquifer thickness has a statistically significant impact on per-area irrigated crop yields in drought
conditions (water deficit greater than 700 mm), the magnitude of the yield impact is small when compared
to differences between irrigated and rainfed production for the same weather conditions. One explanation
for this result is that farmers may choose to retain a smaller proportion of land in irrigated production,
so that limited groundwater pumping capacity can be used to adequately buffer crops against drought
on land that remains under irrigation. Reductions in irrigated areas as an aquifer is depleted have been
demonstrated theoretically [Rouhi-Rad et al., 2020b, Foster et al., 2014, Hrozencik et al., 2017, Deines
et al., 2020], but there has been little empirical research on farmers’ irrigated area choices or how these
are affected by combinations and magnitudes of weather risks and groundwater scarcity.

Figure 3 shows the estimated relationship between aquifer thickness and the share of production
area that is irrigated for corn and soybean after accounting for spatio-temporal variations in weather
conditions and drought risk exposure across the aquifer. Figure 3 demonstrates that aquifer thickness has
meaningfully large impacts on the share of irrigated production for both corn and soybean. As aquifer
thickness declines, the share of irrigated acres for corn decreases from around 0.89 (89%) for an average
county-level aquifer thickness of 100 m to 0.7 (70%) for an average county-level aquifer thickness of 10
m (Please see section C of the Supplementary Information for formal statistical testings). Reductions in
the share of production area under irrigation is also evident for soybean.

2.3 Overall drought-related production losses

The overall influence of aquifer depletion on drought-related production losses is a function of both
per-area irrigated yield and irrigated area changes highlighted in Sections 2.1 and 2.2. Combining
both responses, Figure 4 shows the relationship between water deficit and average per-area produc-
tion (weighted-average of irrigated and rainfed yields, where the weights are production area shares) for
corn and soybean at four values of aquifer thickness: 10, 40, 70, and 100 meters. While similar trends are
observed as in Figure 1, the difference in production loss caused by high water deficits among the aquifer
thickness levels are much more pronounced due to lower estimated irrigated area share for smaller aquifer
thickness values. For example, for an aquifer thickness of 10 m, reductions in average yields occur for
smaller water deficits than are required to trigger reductions in per-area irrigated yields alone. Similarly,
the overall magnitude of yield reduction is greater for average yields than for per-area irrigated yields.
This is because low aquifer thickness values have a greater estimated share of crop area under rainfed
production, which magnifies average yield declines with increasing water deficits.

Figure 5 shows the difference in average per-area productivity for 40 m, 70 m, and 100 m aquifer
thickness levels relative to an aquifer thickness of 10 m for corn and soybean. For corn, aquifer thickness
does not have a significant impact on productivity when water deficits are below about 400 mm. How-
ever, beyond this threshold, higher levels of water deficit result in noticeable and statistically significant
reductions to average corn production. This reflects the combination of lower irrigated yields under
drought conditions, and, more importantly, reduced overall productivity due to smaller share of land
under irrigation in areas where aquifer thickness is lower. Similar effects are also observed for soybean,
although reductions in average production only occur at a higher deficit threshold (greater than around



600 mm) and are smaller in overall magnitude. For example, for a seasonal water deficit of 950 mm
(average water deficit in 2012, the most extreme drought in our historical record), average per-area corn
and soybean productivity are about 25% and 15% lower, respectively, when differentiating between areas
with the 100 m and 10 m aquifer thicknesses.

Figure 4 and Figure 5 also demonstrate that impact of aquifer thickness on average per-area pro-
duction is highly non-linear at high seasonal water deficits. At a water deficit of 950 mm, for example,
reducing from 100 m aquifer thickness to 70 m (decline of 30 m) would result in only 0.15 tonne/ha of
production loss for corn. This negligible difference in average yield from the decline is due to the insen-
sitivity of the share of irrigated acres to a decline in aquifer thickness when the initial aquifer thickness
level is high as can be seen in Figure 3. Reducing from 70 m aquifer thickness to 40 m (decline of 30
m) would result in 0.95 tonne/ha of production loss for corn, with a further drop from 40 m aquifer
thickness to 10 m (decline of 30 m) leading to 1.45 tonne/ha of production loss for corn. Similar but less
pronounced effects are also observed for soybean. This non-linear impact of aquifer thickness is due to
the influence of aquifer thickness on the share of irrigated corn acres (Figure 3), which implicitly reflects
how aquifer thickness alters well yields and, in turn, farmers’ ability to effectively and reliably buffer
crops against water deficits during the growing season.



3 Discussion

We demonstrate the important role of aquifer thickness in determining farmers’ ability to successfully
buffer crops against drought risks in groundwater irrigated agricultural systems such as the High Plains
of the United States. Previous research focused on impacts of drought on agricultural systems has largely
focused either on risks for rainfed production [Schlenker and Roberts, 2009, Lobell et al., 2014, Schlenker
and Lobell, 2010, Zhou et al., 2020, Borgomeo et al., 2020] or for irrigated lands where water supply
constraints are assumed to be minimal [Kuwayama et al., 2019, Zipper et al., 2016, Zhu and Burney,
2022, Zhu et al., 2022, Lu et al., 2020, Davis et al., 2019, Li and Troy, 2018, Luan et al., 2021]. Our
analysis adds new empirical insights to this literature by quantifying how reductions in aquifer thickness
increase the vulnerability of irrigated agricultural production areas to drought events. Critically, our
findings suggest that commonly adopted binary definitions of agricultural land areas into rainfed and
irrigated categories are likely to underestimate exposure of crop production to drought risks, in particular
in areas where water supplies for irrigation are insufficient to fully meet crop water needs in all years due
to constraints imposed by hydrology, policies, and/or economics.

An important implication of our findings is that depletion of groundwater resources is likely to increase
significantly the vulnerability of agricultural production to current and future drought risks. Climate
change is projected to increase the frequency and severity of extreme drought events in many parts of
the world [Ukkola et al., 2020, Chiang et al., 2021, Cook et al., 2020], including in parts of Kansas and
Texas [Bradford et al., 2020, Cook et al., 2022, Mullens and McPherson, 2019] where the High Plains
Aquifer continues to experience prolonged and significant declines in aquifer thickness [Scanlon et al.,
2012, Haacker et al., 2016, Cotterman et al., 2018]. Similar trends of increasing drought risks coupled
with declining aquifer storage have been reported in other major groundwater irrigated farming systems
worldwide [Wada et al., 2010, Doll et al., 2014, Famiglietti, 2014, Feng et al., 2018, Bierkens and Wada,
2019]. Our findings suggest that these simultaneous changes in aquifer conditions will amplify impacts
of future climate change on crop production, with associated ramifications for resilience of supply chains,
commodity markets, rural economies, and food security.

Our findings also provide useful guidance for water managers and policymakers seeking to address
unsustainable groundwater use in the US High Plains and globally. Consistent with prior theoretical
modeling, we demonstrate that the relationship between aquifer thickness and climatic water deficits
during the growing season is highly non-linear when accounting for farmers’ decisions about irrigated
production areas. This indicates that sustainable groundwater conservation efforts [MacEwan et al.,
2017, Butler et al., 2020, Elshall et al., 2020] should be targeted in space and time to avoid depletion
exceeding critical thresholds which impair farmers’ ability to effectively buffer production against drought.
Analysis such as ours can provide valuable evidence about these critical thresholds and tipping points
to guide proactive management of groundwater stocks, and, in doing so, limit economically damaging
transitions from irrigated to rainfed production [Foster et al., 2017, Deines et al., 2020]. For example,
several groundwater management agencies in the Texas portion of the HPA have in recent years set out
targets to ensure 50% of current aquifer storage and thickness remains in 50 years time (so called 50/50
rule) [Closas and Molle, 2018]. The effectiveness of such targets could likely be improved substantially
by setting conservation targets based on empirical evidence about the level of aquifer thickness that is
required to ensure adequate levels of drought protection, both now and with future climate change.

Several opportunities exist for future research to build upon the methods and analyses presented
here. First, due to the limited resolution of our observational data, we were only able to estimate the
impacts of different aquifer thickness categories on drought risk. Availability of sub-county crop yield
data, for example from satellite remote sensing and/or in-situ monitoring [Edreira et al., 2020, Deines
et al., 2021b], would allow models of the continuous effect of aquifer thickness on drought risk to be
developed. Unobserved variations in aquifer properties will also introduce noise into the relationships
between aquifer thickness, well yields, and drought risk. For example, a thinner aquifer interval composed
of coarse sands and gravels may be able to supply comparable or higher well yields than a thicker aquifer
dominated by fine sands and silt deposits, and hence offer greater resilience to water deficits despite
similar or larger aquifer thickness [Butler et al., 2013, Korus and Hensen, 2020]. These measurement
errors in the relationship between aquifer thickness and well yield will lead to attenuation bias [Bound and
Krueger, 1991, Hyslop and Imbens, 2001], suggesting that our analysis is likely to be an underestimate of
the true impacts of groundwater depletion on drought risk. Nonetheless, our analysis shows that - even
in the presence of these measurement uncertainties - we are still able to identify statistically significant
increases in drought risk exposure for irrigated agriculture as a function of declining aquifer thickness.
Improved data on spatial variations in aquifer properties and greater monitoring of real-world changes in
well capacities alongside traditional water level measurements would help to further refine understanding



of patterns of drought vulnerability across the HPA. This would enable more precise estimates to be
made of critical tipping points in the resilience of irrigated agriculture to drought, which are needed to
effectively design and target groundwater conservation policies.

Second, our analysis considered the effects of aquifer thickness on farmers’ decisions to switch from
irrigated to rainfed production, but did not assess other potential responses to aquifer depletion such as
changing crop types or irrigation management practices. Switching to more drought resistant crops or
varieties may enable farmers to maintain irrigated production at lower levels of aquifer thickness, and
has been shown to be an important response to increasing agricultural water scarcity and abstraction
policies in other studies [Bhattarai et al., 2021, Deines et al., 2019, Manning et al., 2017]. Improvements
to irrigation scheduling practices and technologies, such as have been implemented as part of the SD6-
LEMA (Local Enhanced Management Area) in Kansas [Deines et al., 2019, Glose et al., 2022] and in
parts of Texas [Mrad et al., 2020] and which are proposed as part of California’s Sustainable Groundwater
Management Act (SGMA) [Berbel and Esteban, 2019, Lubell et al., 2020], could also help to improve the
efficiency of irrigation and, hence, the ability to more effectively meet crop water demands with lower
well capacities. Such interventions may reduce - but not eliminate - increases in drought risk caused
by lower or declining aquifer thickness, and could also help to mitigate against potential yield losses
caused by over-use of water in wetter years via raising awareness of efficiency saving potentials [Foster
et al., 2019] and the importance of conservation [Marston et al., 2022]. However, risks also exist that
irrigation efficiency improvements will increase net extraction, ultimately causing a rebound effect that
exacerbates future aquifer depletion and drought risks [Grafton et al., 2018, Pérez-Blanco et al., 2021].
Future research should explore potential strategies that farmers could adapt to lessen the combined
impacts of drought and aquifer depletion, alongside efforts to curb unsustainable groundwater extraction
and climate change.

Finally, we focus on the impacts of aquifer thickness on agricultural resilience to seasonal water
deficits. However, where water deficits are distributed unevenly during the season, negative impacts of
aquifer depletion may be even larger. This is because reductions in well yields caused by aquifer depletion
will constrain farmers’ ability to meet peak crop water demands, increasing yield losses compared with if
water deficits had been distributed evenly throughout the season [Ortiz-Bobea et al., 2019]. Furthermore,
irrigation also has broader benefits for crops such as reducing heat-related stress through cooling of land
surface temperatures [Adegoke et al., 2003, Bonfils and Lobell, 2007, Lobell and Bonfils, 2008, Zhu and
Burney, 2022]. Reductions in aquifer thickness therefore may have other negative impacts on irrigated
crop productivity, if constraints to water supply due to aquifer depletion are significant enough to limit
cooling benefits of irrigation during the growing season.

4 Methods

4.1 Data-sets

Our study focuses on the High Plains Aquifer (HPA) in the Central United States. Irrigated agriculture
is integral to the landscape and economy of the HPA, with the region accounting for the majority of grain
production in the United States valued in the billions of dollars annually [Smidt et al., 2016, Fenichel
et al., 2016]. To evaluate the impacts of aquifer depletion on agricultural production overlying the HPA,
we rely on data from several sources, which are described below.

County-level annual irrigated and rainfed yield data for corn and soybean for 1985 through 2016 were
obtained from the U.S. Department of Agriculture’s National Agricultural Statistics Service (USDA-
NASS). USDA-NASS does not report irrigated yields disaggregated by the source of water used for
irrigation. However, it is known that groundwater is the main source of water for irrigation for counties
that overlie the HPA due to the limited availability of surface water resources in this area. Therefore, we
retain both rainfed and irrigated yield observations for counties where greater than 75% of the county
area overlies the boundary of the HPA. For counties that do not meet this condition, only rainfed yield
observations are obtained to avoid the possibility that irrigated production may be only partly dependent
on use of groundwater from the HPA. We also include additional rainfed yield observations for counties
that are outside the HPA, but within the main states covering the aquifer (i.e., South Dakota, Wyoming,
Colorado, New Mexico, Nebraska, Kansas, and Texas), to enable more accurate estimation of the impact
of drought for rainfed production as a point of comparison to our main irrigated crop yield analyses.

Meteorological data needed to estimate spatial and temporal variations in drought conditions across
the HPA were obtained from the gridMET dataset [Abatzoglou, 2013]. gridMET is a gridded daily
weather dataset with a spatial resolution of ~4km, and has been used in a range of climate impacts



studies for agriculture and other sectors in the United States [Abatzoglou and Williams, 2016, Pereira
et al., 2015, Crane-Droesch, 2018, Venkatappa et al., 2021, Zhu et al., 2019]. Daily precipitation values
were extracted for each gridMET cell overlapping counties in our sample. Daily values of maximum and
minimum temperature, surface radiation, wind speed, and humidity were also obtained from gridMET in
order to calculate daily reference crop evapotranspiration for each grid cell. From these data, we computed
the seasonal water deficit (D;+) for each grid cell by subtracting total precipitation from total reference
evapotranspiration for the period May through September, which represents the typical growing season
for corn and soybean in the HPA region. Seasonal water deficit estimates were subsequently aggregated
to the county-level to match our agricultural production data using an area-weighted average based on
the proportion of the county covered by each overlapping gridMET cell. Any county-year combinations
that had an extreme water deficit value (lower than -200 or greater than 1200) were dropped. Figure 6
presents annual water deficit by year for the corn and soybean data, illustrating major drought events
in the region in years such as 2000, 2002, and 2012. The importance of irrigation is clearly evident in
years with large water deficits, with rainfed yields dipping substantially whereas irrigated yields are, on
average, largely unaffected (Figure 6).

Soil characteristics data (sand percentage, silt percentage, and water holding capacity) were ob-
tained from the Soil Survey Geographic Dataset (SSURGO). Observation units of the SSURGO data
are polygons. For each county, the SSURGO polygons were overlaid with the county boundary, and the
area-weighted average of the soil variables were calculated.

As a proxy for the extent of aquifer depletion we use annual estimates of aquifer thickness generated
by existing research [Haacker et al., 2016, 2023]. These data provide annual estimates of the aquifer
thickness at 250 m resolution since 1935. Annual aquifer thickness maps were derived based on interpo-
lation of 14,000 to 20,000 individual observations of water levels per year, along with detailed maps of
both the land surface elevation and bedrock elevation of the HPA. Aquifer thickness estimates for each
year were aggregated to the county level using an area-weighted average to match the resolution of agri-
cultural production data. Aquifer thickness values were only estimated for counties with irrigated yield
observations. Furthermore, during the aggregation process, any county that had an aquifer thickness
value lower than 9 m was removed before aggregation to reflect the fact that aquifer thicknesses lower
than this threshold are not considered to be viable for extraction and therefore it is unlikely these areas
contribute groundwater for irrigation production [Fenichel et al., 2016, Haacker et al., 2016, Deines et al.,
2020]. Figure 7 presents the distribution of aquifer thickness across our study area for counties included
in corn and soybean analyses. Aquifer thickness levels vary substantially over space and time, which we
will exploit in our analysis to quantify how aquifer thickness influences farmers’ exposure and responses
to drought.

These data were combined to form four sets of data for regression analysis: (1) per-area corn yield
(8,814 observations), (2) per-area soybean yield (5,997 observations), (3) share of irrigated corn (2,464
observations), and (4) share of irrigated soybean (1,553 observations).

4.2 Regression Models

Aquifer depletion may impact resilience of irrigated crop production to drought through two main chan-
nels: (1) a reduction in per-area irrigated yields due to the economic or physical inability to meet crop
water requirements; and (2) a reduction in the area of land irrigated, resulting in reduced production
due to lower yields obtained through rainfed agriculture.

To assess the first of these impacts, we quantify the impact of seasonal water deficits (D) during
the growing season (May through September) on county-level rainfed and irrigated yields (Y) using
a hierarchical generalized additive model, where irrigated yield response to seasonal water deficits is
conditioned on the level of aquifer thickness (A) in the county in a given year. Our regression model is
given in Equation (1), with the same model formulation used for corn and soybean:

4 4 K
Yitir = Z a;Cj + Z Z Bik@k(Dit) - Cj + aiir + At + Vit ir (1)
j=1 j=1 k=1

where county and year are indicated by subscripts ¢ and ¢, respectively, whether rainfed or irrigated
is indicated by ir, Y is crop yield, and D is seasonal water deficit. C; is a dummy variable that takes
1 if observation ¢ is under category C;, 0 otherwise. The observations are grouped into four categories:
rainfed production, and county-years with aquifer thickness falling in the [0% — 33.3%), [33.3% — 66.7%),
and [66.7% — 100%] quantile ranges of aquifer thickness. The three irrigated production groups have
about the same number of observations, which ensures statistical stability in estimating yield response



to drought by category. Spline functions are used to capture the potential non-linearity of the impact of
water deficit on yield in a flexible manner, with o; representing the category-specific intercept, ¢; x kth
spline basis function, and Sy is its coefficient (For further explanations on how spline-based regression
functions, please see section D of the Supplementary Information.). K is the total number of spline
basis functions. K = 3 was chosen for this regression to prevent our estimated response from becoming
unrealistically oscillatory while maintaining a good fit based on Bayesian Information Criterion (BIC).
To control for time-invariant heterogeneity across counties and yearly shocks, county-irrigation-status
fixed effects a;,ir and year fixed effects s are also included. County-irrigation-status fixed effects are
used instead of county fixed effects because some counties have both rainfed and irrigated observations,
and they need to be distinguished. Standard error estimation is clustered by county.

To estimate the additional impact of aquifer thickness on the share of total acres that are irrigated in
a county, a fractional logit model under the generalized additive model framework is used in which the
impact of aquifer thickness, average water deficit, and their interactions are estimated without the prior
requirement to assume any functional forms. This allows for flexible representation of the non-linear
relationships between drought risks, aquifer conditions, and agricultural land use, including potential
thresholds in farmers’ irrigated area choices under water supply constraints that have been noted in prior
work [Foster et al., 2015b,a, Hrozencik et al., 2017]. The model is given in Equation (2) below:

K L
l"g(%) =Bo+ Y k(D) + Y Bimi(Aie) + Xi + 00 + vi 2)
k=1 1=1

where s;+ is the share of irrigated production. The impact of average water deficit is captured by
ZkK kP (D;), where ¢ () is the kth spline basis function and 7y is its coefficient. The impact of
aquifer thickness is captured in a similar way with 7;(-) and §; being the Ith spline basis function and its
coefficient, respectively. K and L are the numbers of basis functions for D and A, respectively. K = 4 and
L = 4 were chosen to balance preventing the estimated responses from being unrealistically oscillatory
and ensuring a good fit as indicated by BIC. For this regression, counties with aquifer thickness levels
greater than 180 m were excluded due to the sparsity of observations in that range because our flexible
functional form approach cannot reliably estimate its impact. County-level soil characteristics including
sand percentage, silt percentage, and water holding capacity, are represented by X;. State-year fixed
effects and error term are represented by 6, : and v; ., respectively. Unlike for our regression models
of per-area yields, we do not include county fixed effects to avoid eliminating the majority of variation
in the aquifer thickness variable. The vast majority of variation in aquifer thickness is cross-sectional
(across counties), rather than over time. Including county fixed effects would effectively eliminate the
cross-sectional variation in aquifer thickness. A formal discussion of the trade-offs associated with the
choice of fixed effects is provided in section E of the Supplementary Information.

In the final step of our analysis, we then estimate the average crop yield as a function of aquifer
thickness and seasonal water deficit. The average crop yield is estimated as the average of rainfed and
irrigated yields estimated on the basis of Equation (1), weighted by the estimated share of total acres
that are irrigated in the county estimated using Equation (2). In this combined model, aquifer thickness
is a continuous variable for the irrigated area share regression component and a categorical variable for
the irrigated yield regression following the format of Equations (2) and (1), respectively. Comparing the
estimated average crop yield across different levels of aquifer thickness for a given seasonal water deficit
provides an indication of the effect of aquifer conditions on drought impacts, considering impacts of
drought through changes in both per-area irrigated yields and the area of land irrigated. Standard errors
of this analysis are estimated using bootstrap methods clustered by county. Note that irrigated area
share and average crop yield estimates use data only from counties that have both irrigated and rainfed
production observations because irrigated area share cannot be calculated when missing either one of
the irrigated and rainfed observations. Counties with solely irrigated or rainfed production observation
data (Section 4.1) are used solely for estimating impacts of drought on per-area crop irrigated or rainfed
yields respectively (Equation 1).

4.3 Data Availability

All the raw data-sets used in this study are publicly accessible. The boundary shape file of the High
Plains aquifer was obtained from the U.S. Geological Survey at https://water.usgs.gov/GIS/metadata/
usgswrd/XML/ds543. xml#stdorder. County and State boundaries were obtained using the R tigris pack-
age [Walker, 2022]. These datasets were used for Figure 7. Corn and soybean yield data were obtained
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from the U.S. Department of Agriculture’s National Agricultural Statistics Service (USDA-NASS), avail-
able at https://www.nass.usda.gov/Quick_Stats/. The R tidyUSDA package [Lindblad, 2022] was
used to automatically download the relevant data. This data is used for Figure 6 and the regression
analysis. Weather data was obtained from the gridMET dataset [Abatzoglou, 2013], which is available
at https://www.climatologylab.org/gridmet.html. Elevation data was obtained from the gridMET
website at https://www.climatologylab.org/gridmet.html. These datasets were used to calculate wa-
ter deficit, which was used for Figure 6 and the regression analysis. The aquifer thickness data were
obtained from Hydroshare [Haacker et al., 2023] available at https://www.hydroshare.org/resource/
7d925c7944244032af98c9ed20c22db6/. This data is used for Figure 7 and the regression analysis. Soil
characteristics data was obtained from the Soil Survey Geographic Dataset, which was used for regres-
sion analysis. The R soilDB package [Beaudette et al., 2023] was used to download the data. Re-
gression analyses are implemented using the R fixest package [Bergé, 2018]. Other key R packages
include ggplot2 [Wickham, 2016] for creating plots, data.table [Dowle and Srinivasan, 2022] for data
wrangling, and sf [Edzer, 2018] for spatial data operations. A minimum set of data files required to
reproduce the results and figures presented in this article can be found on the Figshare website (DOI:
10.6084/m9.figshare.24492196). Due to file size constraints on Figshare, not every data file is hosted
there. However, a complete set of data files can be accessed via the provided Dropbox link: https:
//www.dropbox.com/scl/fo/bghhwlidmi7wxlokOazbn/h?rlkey=tgbix1hp7g9np9etlolz3biyr&dl=0.

4.4 Code Availability

All data processing and analyses were carried out using R [R Core Team, 2021]. The codes used for
this study are available at the following GitHub repository: https://github.com/tmieno2/Drought-
Production-Risk-Aquifer. Additionally, instructions for reproducing all the results and figures pre-
sented in this article can be found at the bottom of the repository page in the README section.
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Tables

Figures

Figure 1: The impact of water deficit and aquifer thickness on rainfed and irrigated per-area yields of corn

and soybean in US High Plains.
m e
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Aquifer Thickness
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—— First Quantile: [9m, 29.9m] —— Third Quantile: [66.8m, 215.7m]
Note: The solid lines represent per-area irrigated yield responses to water deficits, dissagregated by aquifer thickness level,
considering three quantile groups that capture the range of aquifer thickness values in our sample: (i) 9 m to 30.1 m; (ii)

30.1 m to 67.2 m; and (iii) 67.2 m to 215.8 m. The histograms on the top of each panel show the distribution of county-level

annual water deficit values included in regressions for each crop. Total number of observations are 8,814 and 5,997 for corn
and soybean regressions, respectively.
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Figure 2: The difference in estimated county-level irrigated corn and soybean yields
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Second Quantile: [29.9m, 66.8m] Third Quantile: [66.8m, 215.7m]

———— ——

Difference in Yield (tonne/ha)
o

I I I I I I I I I I I I I I
-200 0 200 400 600 800 1000 1200 -200 0 200 400 600 800 1000 120C
Water Deficit (mm)

B. Soybean
Second Quantile: [29.9m, 66.8m] Third Quantile: [66.8m, 215.7m]
g 2
)
c
c
ie)
h=}
Q 0 I— S B B
>
=
Q
o
c
o
£ -2
a
I I I I I I I I I I I I I I
-200 0 200 400 600 800 1000 -200 0 200 400 600 800 1000

Water Deficit (mm)

Note: The solid red lines represent the difference in estimated per-area irrigated corn (top panels) and soybean (bottom panels)
yields for the second and third (largest) aquifer thickness quantiles relative to the first (smallest) aquifer thickness quantile.
Shaded area represents 95% confidence interval.
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Figure 3: The estimated impact of aquifer thickness on the share of agricultural production under irrigation
for corn and soybean producing counties in the US High Plains
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Note: The solid black line represents the estimated share of irrigated acres. Shaded area represents 95% confidence interval.
The histograms on the top of each panel show the distribution of county-level aquifer thickness values included for each crop.
Total number of observations are 2,464 and 1,553 for corn and soybean regressions, respectively.
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Figure 4: Average productivity of corn and soybean in the US High Plains
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Note: The solid lines represent average yield at different levels of water deficit and aquifer thickness, considering both per-area
yield responses and farmers’ choices about irrigated area shares in response to different water deficit and aquifer conditions.
Please see section B of the Supplementary Information for estimated average yield response curves with 95% confidence intervals
displayed, which are omitted here for visual clarity. The histograms on the top of each panel show the distribution of county-level
annual water deficit values included in regressions for each crop.
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Figure 5: Difference in average yield of corn and soybean for aquifer thickness levels
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Note: The solid red lines represent difference in average yield of corn and soybean for aquifer thickness levels of 40 m, 70 m,
and 100 m, relative to a baseline aquifer thickness of 10 m. Shaded areas denote 95% confidence interval, which when greater

than zero indicate average yields for the given aquifer thickness level are statistically significantly greater than for an aquifer
thickness of 10 m at the 5% level of significance.
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Historical rainfed yield, irrigated yield, and water deficit

Figure 6
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Figure 7: County-average aquifer thickness in 2016

A. Corn B. Soybean
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Note: The map shows county-average aquifer thickness in 2016 for each county included in our corn and soybean regression
analyses. Counties highlighted in gray are rainfed only, and the red polygon denotes the boundary of the High Plains Aquifer
system.
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A Groundwater management policies as a potential causal
pathway

Our analysis evaluates the links between aquifer thickness and drought resilience, proposing a causal
link between declining aquifer thickness and irrigated production during droughts. In the first section of
our article, we propose that this connection is driven by impacts of aquifer thickness on well yields and,
hence, farmers ability to use groundwater to fully buffer crops against water deficits during drought.

It is important to assess the extent to which this causal relationship may be affected or confounded
by other factors. One key alternative hypothesis is that regulations limiting groundwater withdrawals
could have been introduced as a response to declining aquifer thickness, with resulting reductions in
irrigated areas and irrigated crop yields driven by regulatory rather than hydrologic (i.e. well yield)
constraints. Below, we discuss the reasons that regulatory constraints are highly unlikely to be the cause
of the relationships between aquifer thickness and drought impacts observed in our analysis for the HPA.

First, it is important the majority of groundwater withdrawal regulations that do exist in the HPA
limit pumping to a specified volume over a multiyear period. It is also common for farmers to have been
allowed to bank and carryover significant volumes of water deficits from historic periods when allocation
levels were higher [Rimsaité and Brozovié, 2023], further increasing their regulatory quotas above defined
caps. Together, these factors mean that farmers in parts of the HPA where groundwater withdrawals are
regulated or restricted are still able to increase water withdrawals substantially in drought years when
demand is higher. Prior research has shown that as a result farmers water use decisions in HPA are not
constrained by such regulations even in extreme drought years such as 2012 [Foster et al., 2019].

Where more restrictive groundwater withdrawal limits have been introduced, for example in some
Groundwater Management Districts in Kansas [Marston et al., 2022, Rimsaité and Brozovi¢, 2023], these
have universally been implemented in the last 5-10 years and therefore have no or only minimal overlap
with our study period which extends up to only 2016. The earliest of these groundwater managements
in Kansas interventions was the Sheridan 6 Local Enhanced Management Area (LEMA) in Northwest
Kansas, which introduced restrictions to farmer groundwater pumping of 11 inches per year on average
per 5-year period starting in 2013. While this overlaps with the final 4 years of our study period, the
Sheridan 6 LEMA area covers only parts of two counties in Kansas and hence represents a very small
proportion of our overall study sample. Additionally, the years 2013-2016 were all characterized by
average or above average growing season rainfall (i.e. not drought years). Furthermore, evidence shows
that the effect of restrictions introduced by the LEMA has primarily been a reduction in per-area water
use, with irrigated crop yields largely unaffected and only small reductions in irrigated areas compared to
pre-policy conditions [Drysdale and Hendricks, 2018, Deines et al., 2021a, Whittemore et al., 2023]. These
policies therefore would not be expected to confound our results on the impacts of aquifer thickness.

Finally, we also highlight that areas of the southern HPA, in particular in northern Texas, where
the lowest aquifer thickness values are observed have few if any regulatory restrictions on groundwater
extraction. This is due to laws that typically provide farmers with absolute rights to use groundwater
under their land, coupled with low levels of metering. Research has shown that these conditions have
historically limited or constrained potential for implementing extensive and binding pumping restrictions
on irrigating farmers in these areas [Wheeler et al., 2016, Closas and Molle, 2018], again indicating that
regulations are not the binding driver of water use constraints in these areas. As discussed in section 1
of our article, there is extensive evidence pointing to reduced well yields in these areas of the HPA. This
evidence ranges from anecdotal and theoretical insights to simulation-based studies. Collectively, they
suggest that these restrictions significantly constrain farmers’ ability to meet crop water demands during
droughts.

B Uncertainties in estimated impacts of water deficit on
irrigated and average yield

In the main article, the confidence intervals of the estimated yield responses to water deficit were not
presented to enable easier comparison between response curves. This section provides visualization of
yield response with the 95 % confidence interval to convey the degree of uncertainty in our estimation.
Figures S.1 and S.2 present the impact of water deficit on crop yield by aquifer thickness category with
the 95% confidence interval for irrigated corn and soybean, respectively. Figure S.3 presents the impact
of water deficit on average crop yield (irrigated and rainfed combined) by aquifer thickness category for
corn and soybean with the 95% confidence interval.
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Figure S.1: The impact of water deficit and aquifer thickness on rainfed and irrigated per-area irrigated
yields of corn
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Note: The solid black lines represent the estimated rainfed and irrigated per-area irrigated yields of corn in US High Plains at
different values of water deficit and aquifer thickness. The gray shaded area represents the 95% confidence interval.
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Figure S.2: The impact of water deficit and aquifer thickness on rainfed and irrigated per-area irrigated
yields of soybean
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Note: The solid black lines represent the estimated rainfed and irrigated per-area irrigated yields of soybean in US High Plains
at different values of water deficit and aquifer thickness. The gray shaded area represents the 95% confidence interval.
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Figure S.3: Average productivity of corn and soybean
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Note: The black solid lines represent average yield of corn (top panel) and soybean (bottom panel) in the US High Plains for
different levels of water deficit and aquifer thickness. The gray shaded area represents the 95% confidence interval.
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C Comparison of the impacts of different aquifer thickness
levels on irrigated area share

Figure S.4 presents the difference in the estimated share of irrigated acres at different levels of aquifer
thickness relative to the aquifer thickness level of 100 m, which represents a high level of aquifer thickness
for our study area that exerts no constraints on water supply for irrigation. Gray shaded areas represented
the 95% confidence intervals for the estimated relationships. Where this range exceeds the red zero line,
this indicates that the difference in aquifer thickness (relative to 100 m baseline) leads to a statistically
significant (at 5% level) reduction in irrigated production area share.

Figure S.4: Decline in the share of acres that are irrigated
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Note: The solid black lines represent the share of acres that are irrigated as a function of aquifer thickness relative to a baseline
aquifer thickness level of 100 m (black line). The gray shaded areas represent the 95% confidence interval for this estimated
relationship.



D Spline basis functions and GAM estimation

We used generalized additive models (GAM) for our regression analysis. In GAM, the impact of a variable
on the dependent variable can be expressed as a series of spline basis functions and their coefficients.
Suppose you are interested in modeling the following model.

y=/f(z)+p ®3)
Where f(x) represents the impact of variable x on y. The shape of f(x) is not known to the researcher.
GAM attempts to represent f(z) with a series of spline basis functions and their coefficients like below.

y=> Bron(x)+p (4)
k=1

Where ¢ (-) is the kth spline basis function and Sy is its coefficient. Figure S.5 provides a visual
illustration of a series of thin-plate spline basis functions.

Figure S.5: Example of a series of thin-plate spline basis functions
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Note: This figure presents a series of thin-plate spline basis functions evaluated at a range of x values.

Different coefficients (or namely weights) given to the spline basis functions result in different shapes
of the impact of z on y. Figure S.6 presents two examples of two different sets of coefficients and their
resulting representation of f(z). In the first case, {f1,..., 35} = {60, 60,60,60,60}. In the second case,
{B1,--.,B5} ={20,—-20,—-40,40,60}. Among all the possibilities of the combinations of the coefficients,
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GAM finds the set of coefficient values that fits the data best. Unlike non-parametric regression, a GAM
is a linear (in-parameter) model and estimates () to best fit the observation data.

Figure S.6: Example of a function represented by different coefficient values
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Note: This figure presents two example functions derived by applying different coefficients on the thin-plate spline basis
functions.
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E Comparison of the choice of spatial fixed effects in irri-
gation area share regressions

Figure S.7 presents the histogram of aquifer thickness after demeaning these values by removing either
their: (A) yearly average, (B) state-year average, or (C) county average values. This analysis is used to
gain insights into how much variation in aquifer thickness for identification is left when implementing
either: (A) only year fixed effects, (B) state-year fixed effects, or (C) county and year fixed effects. As
shown in Figure S.7, including state-year fixed effects does not substantially reduce the total variation in
aquifer thickness compared to including only year fixed effects. However, including county fixed effects
dramatically reduces the total variation in aquifer thickness, resulting in extremely inaccurate estimates
of impacts of aquifer conditions on drought risk (high standard error). For this reason, we included
state-year fixed effects in our irrigated production share regression analysis to strike a balance between
preserving variability in aquifer thickness data and ensuring controls for other unobserved spatial factors
that may influence estimates of the impacts of aquifer conditions on production shares.

Figure S.7: Comparison of variations in aquifer thickness after demeaning
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Note: This figure compares the variations in aquifer thickness after demeaning by yearly average (top), state-year average
(middle), and county-year average (bottom).

Figure S.8 compares the impact of aquifer thickness on the share of irrigated acres for corn and soybean
with different sets of fixed effects. For both corn and soybean, the negative impact of a reduction in
aquifer thickness on the share of irrigated acres is virtually the same when using different possible sets of
fixed effects. Importantly, adding state-year fixed effects, which control for unobservable factors at the
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state-year level, does not alter the estimated impacts of aquifer thickness on share of acres irrigated. This
indicates that, even though there may be unobservable factors that are spatially correlated with aquifer
thickness beyond soil characteristics, their correlation may not cause significant bias to our estimation
and findings. We note that more detailed assessment of the impacts of including county-fixed effects
is beyond the scope of our available datasets, and we defer this matter to future studies where greater
temporal variations in aquifer thickness levels may be available to allow incorporation of county-level
fixed effects.

Figure S.8: Comparison of estimated impact of aquifer thickness on the share of irrigated acres with and
without state fixed effects
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Note: The solid black lines represent the estimated share of irrigated acres for corn and soybean under different types of fixed
effects. Gray shaded area represents 95% confidence interval.
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