
The University of Manchester Research

D-groups and the Dixmier–Moeglin equivalence

DOI:
10.2140/ant.2018.12.343

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Bell, J., Leon Sanchez, O., & Moosa, R. (2018). D-groups and the Dixmier–Moeglin equivalence. Algebra and
Number Theory, 12(2), 343-378. https://doi.org/10.2140/ant.2018.12.343

Published in:
Algebra and Number Theory

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:11. Jan. 2025

https://doi.org/10.2140/ant.2018.12.343
https://research.manchester.ac.uk/en/publications/f6863044-07a8-43ff-813c-d902049e3eb6
https://doi.org/10.2140/ant.2018.12.343


D-GROUPS AND THE DIXMIER-MOEGLIN EQUIVALENCE

JASON BELL, OMAR LEÓN SÁNCHEZ, AND RAHIM MOOSA

Abstract. A differential-algebraic geometric analogue of the Dixmier-Moeglin
equivalence is articulated, and proven to hold for D-groups over the constants.

The model theory of differentially closed fields of characteristic zero, in par-

ticular the notion of analysability in the constants, plays a central role. As an
application it is shown that if R is a commutative affine Hopf algebra over a

field of characteristic zero, and A is an Ore extension to which the Hopf algebra
structure extends, then A satisfies the classical Dixmier-Moeglin equivalence.

Along the way it is shown that all such A are Hopf Ore extensions in the sense

of [Brown et al., “Connected Hopf algebras and iterated Ore extensions”, Jour-
nal of Pure and Applied Algebra, 219(6), 2015].
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1. Introduction

This article is about an analogue of the Dixmier-Moeglin equivalence for differential-
algebraic geometry. (The immediate motivation is an application to the classical
noncommutative Dixmier-Moeglin problem, which we will describe later in this
introduction.) The main objects of study here are D-varieties. An introduction to
this category is given in §2.1, but let us at least recall here that a D-variety (over the
constants) is an algebraic variety V over a field k of characteristic zero, equipped
with a regular section to the tangent bundle s : V → TV . A D-subvariety is an
algebraic subvariety W for which the restriction s�W is a section to the tangent
bundle of W . There are natural notions of D-morphism and D-rational map. For
convenience, let us assume that k is algebraically closed. We are interested in the
following properties of an irreducible D-subvariety W ⊆ V over k:
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2 JASON BELL, OMAR LEÓN SÁNCHEZ, AND RAHIM MOOSA

• δ-primitivity. There is a k-point of W that is not contained in any proper
D-subvariety of W over k.
• δ-local-closedness. There is a maximum proper D-subvariety of W over k.
• δ-rationality. There is no nonconstant rational map from (W, s) to (A1, 0)

over k, where here 0 denotes the zero section to the tangent bundle of the
affine line.

The question is, for which ambient D-varieties (V, s) are these three properties
equivalent for all D-subvarieties? It is not hard to see, and is spelled out in the
proof of Corollary 2.14 below, that in general

δ-local-closedness =⇒ δ-primitivity =⇒ δ-rationality.

In earlier work [1], together with Stéphane Launois, we used the model theory of
the Manin kernel to produce (in any dimension ≥ 3) a D-variety which is itself
δ-rational but not δ-locally-closed. Here we focus on positive results. The main
one, which appears as Corollary 2.17 below, is the following:

Theorem A. Suppose (G, s) is a D-group over the constants – that is, G is an
algebraic group and s : G→ TG is a homomorphism of algebraic groups. Then for
any D-subvariety of (G, s), δ-rationality implies δ-local-closedness. In particular,
for every D-subvariety of (G, s), δ-rationality, δ-primitivity, and δ-local-closedness
are equivalent properties.

The proof of Theorem A relies on the model theory of differentially closed fields.
In model-theoretic parlance, the point is that δ-rationality of (V, s) is equivalent to
the generic type of the corresponding Kolchin closed set being weakly orthogonal to
the constants, while δ-local-closedness means that the type is isolated. One context
in which one can prove, using model-theoretic binding groups, for example, that
weak orthogonality to the constants implies isolation, is when the type in question
is analysable in the constants. We give a geometric explanation of analysability
in §2.5 in terms of what we call compound isotriviality of D-varieties. The reader
can look there for a precise definition, but suffice it to say that a compound isotrivial
D-variety is one that admits a finite sequence of fibrations where at each stage the
fibres are isomorphic (possibly over a differential field extension of the base) to D-
varieties where the section is the zero section. We show that for compound isotriv-
ial D-varieties δ-rationality implies δ-local-closedness (Proposition 2.13). Then we
show, using known results about the structure of differential-algebraic groups, that
every D-subvariety of a D-group over the constants is compound isotrivial (Propo-
sition 2.16). Theorem A follows.

It turns out that for our intended application, namely Theorem B2 appearing
later in this introduction, we need Theorem A to work for D-varieties that are
slightly more general than D-groups. Given an affine algebraic group G, we may
as well assume that G ⊆ GLn, so that a regular section to the tangent bundle
is then of the form s = (id, s) where s : G → Matn. It is not hard to check
from how the algebraic group structure is defined on the tangent bundle, that
s : G→ TG being a homomorphism is equivalent to the following identity: s(gh) =
s(g)h+ gs(h), where g, h ∈ G are matrices and all addition and multiplication here
is matrix addition and multiplication. Now suppose we are given a homomorphism
to the multiplicative group, a : G → Gm. By an a-twisted D-group we mean a
D-variety (G, s) where G is an affine algebraic group and s = (id, s) satisfies the
identity: s(gh) = s(g)h+ a(g)gs(h). So an a-twisted D-group is a D-group exactly
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when a = 1. We are able to show that D-subvarieties of a-twisted D-groups are
also compound isotrivial. This yields the following generalisation of Theorem A:
For any D-subvariety of an a-twisted D-group over the constants, δ-rationality,
δ-primitivity, and δ-local-closedness are equivalent properties. The passage from
D-groups to a-twisted D-groups turns out to be technically quite difficult, and is
done in Section 3.

It is worth pointing out that we have been intentionally ambigious about the
field of definitions in the statements of Theorem A and its a-twisted generalisation.
The reason for this is that the results actually hold true for D-subvarieties of (G, s)
that are defined over differential field extensions of the base field k. To make this
precise one has to give a more general definition of D-variety using prolongations
rather than tangent bundles, and we have decided to delay this to the main body of
the article. While the final conclusion we are interested in is about D-subvarieties
over k, this possibility of passing to base extensions is an important part of the
inductive arguments involved.

Now for the application to noncommutative algebra, to which Section 4 is dedi-
cated. The classical Dixmier-Moeglin equivalence (DME) is about prime ideals in a
noetherian associative algebra over a field of characteristic zero; it asserts the equiv-
alence between three properties of such prime ideals: primitivity (a representation-
theoretic property), local-closedness (a geometric property), and rationality (an
algebraic property). Precise definitions are given at the beginning of §4. We are
interested in the question of when the DME holds for skew polynomial rings R[x; δ]
over finitely generated commutative integral differential k-algebras (R, δ). Recall
thatR[x; δ] is the noncommutative polynomial ring in x overR where xr = rx+δ(r).
This question is not vacuous since examples of such skew polynomial rings failing
the DME were given in [1]; indeed, these were the first counterexamples to the
DME of finite Gelfand-Kirillov dimension. The connection to D-varieties should be
clear: R = k[V ] for some irreducible algebraic variety V , and the k-linear derivation
δ induces a regular section s : V → TV . So the study of such (R, δ) is precisely the
same thing as the study of D-varieties. We are able to prove (this is Proposition 4.6
below) that R[x; δ] will satisfy the DME if δ-rationality implies δ-locally-closedness
for all D-subvarieties of the D-variety (V, s) associated to (R, δ). Theorem A there-
fore answers our question in the special case of differential Hopf algebras.

Theorem B1. If (R, δ) is a finitely generated commutative integral differential
Hopf k-algebra then R[x; δ] satisfies the DME.

Being a differential Hopf algebra means that R has the structure of a Hopf algebra
and that δ commutes with the coproduct – this is equivalent to saying that (R, δ)
comes from an affine D-group (G, s).

More generally than skew polynomial rings, we consider Ore extensions: Sup-
pose R is a finitely generated commutative integral k-algebra, σ is a k-algebra
automorphism of R, and δ is a k-linear σ-derivation of R – meaning that δ(rs) =
σ(r)δ(s) + δ(r)s. Recall that the Ore extension R[x;σ, δ] is the noncommutative
polynomial ring in the variable x over R where xr = σ(r)x+ δ(r). So when σ = id
we are in the skew polynomial case discussed above. What about the DME for
R[x;σ, δ]?
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Theorem B2. Suppose R is a finitely generated commutative integral Hopf k-
algebra. If an Ore extension R[x;σ, δ] admits a Hopf algebra structure extending
that on R, then R[x;σ, δ] satisfies the DME.

That Theorem B1 is a special case of Theorem B2 uses the (known) fact that one can
always extend the Hopf structure on a differential algebra R to the skew polynomial
ring extension R[x; δ], namely by the coproduct induced by ∆(x) = x⊗ 1 + 1⊗ x.
Theorem B2 appears as Theorem 4.1 below. Its proof goes via a reduction to the
case when σ = id and then an application of the stronger a-twisted version of
Theorem A discussed above. Both of these steps use the work of Brown et al. [5] on
Hopf Ore extensions. One obstacle is that while their results hold for much more
general R than we are considering, they are conditional on the coproduct of the
variable x in the Ore extension taking the special form

∆(x) = a⊗ x+ x⊗ b+ v(x⊗ x) + w

where a, b ∈ R and v, w ∈ R ⊗k R. This is part of their definition of a Hopf Ore
extension, though they speculate about its necessity. We prove that when k is
algebraically closed, after a linear change of variable, ∆(x) always has the above
form. This is Theorem 4.2 below, and may be of independent interest:

Theorem C. Suppose k is algebraically closed and R is a finitely generated commu-
tative integral Hopf k-algebra. If an Ore extension R[x;σ, δ] admits a Hopf algebra
structure extending that of R then, after a linear change of the variable x,

∆(x) = a⊗ x+ x⊗ b+ w

for some a, b ∈ R, each of which is either 0 or group-like, and some w ∈ R ⊗k R.
In particular, R[x;σ, δ] is a Hopf Ore extension of R.

It has been conjectured [2] that all finitely generated complex noetherian Hopf
algebras of finite Gelfand-Kirillov dimension satisfy the DME. Theorem B2 verifies
a special case. To make more significant progress on this conjecture one would like
to pass from Hopf Ore extensions to iterated Hopf Ore extensions. As of now, this
appears to be beyond the scope of the techniques used here.

Throughout this paper, by an affine k-algebra we mean a finitely generated
commutative k-algebra that is an integral domain.

Acknowledgements. We are grateful to an anonymous referee for a very thorough
reading which lead to the discovery of an error in an initial version of this paper.

2. The δ-DME for D-groups over the constants

In this chapter we prove Theorem A of the introduction. After some preliminar-
ies, we articulate in §2.3 the differential-algebraic geometric analogue of the DME
suggested in the introduction, and call it the δ-DME. A sufficient condition for
this to hold in terms of the model-theoretic notion of analysability to the constants
is given in §2.5, and then applied to show that D-groups over the constants sat-
isfy the δ-DME in §2.6. In a final section we reformulate δ-DME algebraically, as
a statement about commutative differential Hopf algebras, thereby preparing the
stage for the application to the classical DME in chapter 4.



D-GROUPS AND THE DIXMIER-MOEGLIN EQUIVALENCE 5

2.1. Preliminaries on D-varieties. Suppose k is a field of characteristic zero
equipped with a derivation δ. In this section we review the notion of a D-variety
over k. Several more detailed expositions can be found in the literature, for instance
Buium [6] who introduced the notion, and also [16, §2].

We first need to recall what prolongations are. If V ⊆ An is an affine algebraic
variety over k, then by the δ-prolongation of V is meant the algebraic variety
τV ⊆ A2n over k whose defining equations are

P (X1, . . . , Xn) = 0

P δ(X1, . . . , Xn) +

n∑
i=1

∂P

∂Xi
(X1, . . . , Xn) ·Xi = 0

for each P ∈ I(V ) ⊂ k[X1, . . . , Xn]. Here P δ denotes the polynomial obtained by
applying δ to all the coefficients of P . The projection onto the first n coordinates
gives us a surjective morphism π : τV → V .

Note that if K is any δ-field extension of k, and a ∈ V (K), then

∇(a) := (a, δa) ∈ τV (K).

If V is defined over the constant field of (k, δ) then τV is nothing other than the
tangent bundle TV . In general, τV will be a torsor for the tangent bundle; for each
a ∈ V the fibre τaV is an affine translate of the tangent space TaV . In particular,
if V is smooth and irreducible then so is τV .

Taking prolongations is a functor which acts on morphisms f : V → W by
acting on their graphs. It preserves the following properties of a morphism: étale-
ness, being a closed embedding, and being smooth. The functor τ acts naturally
on rational maps also; this is because for U a Zariski open subset of an irreducible
variety V , τV �U = τ(U) is Zariski open in τ(V ). Moreover, prolongations commute
with base extension to δ-field extensions.

We have restricted our attention here to the affine case merely for concreteness.
The prolongation construction extends to abstract varieties by patching over an
affine cover in a natural and canonical way.

A D-variety over k is an algebraic variety V over k equipped with a regular
section s : V → τV over k. An example is when V is defined over the constants
and s : V → TV is the zero section.

If V is affine then a D-variety structure on V is nothing other than an extension
of δ to the co-ordinate ring k[V ]. Indeed, if s : V → τV is given by s(X) =(
X, s1(X), . . . , sn(X)

)
in variables X = (X1, . . . , Xn), then we can extend δ to

k[X] by Xj 7→ sj(X), and this will induce a derivation on k[V ]. Conversely, given
an extension of δ to k[V ], and choosing sj(X) to be such that δ

(
Xj + I(V )

)
=

sj(X) + I(V ), we get that s :=
(

id, s1, . . . , sn
)

: V → τV is a regular section.
A D-subvariety of (V, s) is a closed algebraic subvariety W ⊆ V , over a possibly

larger δ-field K, such that s(W ) ⊆ τW . In principle one should talk about the base
extension of V to K before talking about subvarieties over K, but as prolongations
commute with base extension, and following standard model-theoretic practices, we
allow D-subvarieties to be defined over arbitrary δ-field extensions unless explicitly
stated otherwise.

A D-variety (V, s) over k is said to be k-irreducible if V is k-irreducible as an
algebraic variety. In this case s induces on k(V ) the structure of a δ-field extend-
ing k. A D-variety (V, s) is called irreducible if V is absolutely irreducible. In
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general, every irreducible component of V is a D-subvariety over kalg and these are
called the irreducible components of (V, s).

A morphism of D-varieties (V, s) → (W, t) is a morphism of algebraic varieties
f : V →W such that

τV
τf // τW

V

s

OO

f // W

t

OO

commutes. It is not hard to verify that the pull-back of a D-variety, and the Zariski
closure of the image of a D-variety, under a D-morphism, are again D-varieties.

In the same way, we can talk about rational maps between D-varieties. A useful
fact is that if U is a nonempty Zariski open subset of V , then the prolongation of
U is the restriction of τV to U , and so (U, s�U ) is a D-variety in its own right. So
a rational map on V is a D-rational map if it is a D-morphism when restricted to
the Zariski open subset on which it is defined.

A D-constant rational function on a D-variety (V, s) over k is a rational map
over k from (V, s) to (A1, 0) where 0 denotes the zero section to the tangent bundle
of the affine line. In the case when (V, s) is k-irreducible, they correspond precisely
to the δ-constants of

(
k(V ), δ

)
.

2.2. Differentially closed fields and the Kolchin topology. Underlying our
approach to the study of D-varieties is the model theory of existentially closed δ-
fields (of characteristic zero). These are δ-fields K with the property that any finite
sequence of δ-polynomial equations and inequations over K which have a solution
in some δ-field extension, already have a solution in K. The class of existentially
closed δ-fields of characteristic zero is axiomatisable in first-order logic, and its
theory is denoted by DCF0. We will work in a fixed model of this theory, an
existentially closed δ-field K. In particular, K is algebraically closed. We let Kδ

denote the field of constants of K; it is an algebraically closed field that is pure
in the sense that the structure induced on it by DCF0 is simply that given by the
language of rings.

Suppose (V, s) is a D-variety over K. Let x ∈ V (K). Note that {x} is a D-
subvariety if and only if ∇(x) = s(x) where recall that ∇ : V (K)→ τV (K) is given
by x 7→ (x, δx). We call such points D-points, and denote the set of all D-points
in V (K) by (V, s)](K). It is an example, the main example we will encounter, of a
Kolchin closed subset of V (K). In general a Kolchin closed subset of the K-points
of an algebraic variety is one that is defined Zariski-locally by the vanishing of δ-
polynomials. Note that when (V, s) is defined over the constants and s is the zero
section, (V, s)](K) = V (Kδ).

One of the main consequences of working in an existential closed δ-field is that
(V, s)](K) is Zariski-dense in V (K). In particular, for any subvariety W ⊆ V , we
have that W is a D-subvariety if and only if W ∩ (V, s)](K) is Zariski dense in
W (K).

Suppose (V, s) is k-irreducible for some δ-subfield k. If we allow ourselves to pass
to a larger existentially closed δ-field, then we can always find a k-generic D-point
of (V, s), that is, a D-point x ∈ (V, s)](K) that is Zariski-generic over k in V . Note
that such a point is also Kolchin-generic in (V, s)](K) over k in the sense that it is
not contained in any proper Kolchin closed subset defined over k.
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In order to ensure the existence of generic D-points without having to pass to
larger δ-fields, it is convenient to assume that K is already sufficiently large, namely
saturated. This means that if k is a δ-subfield of strictly smaller cardinality than K,
and F is a collection of Kolchin constructible sets over k every finite subcollection
of which has a nonempty intersection, then F has a nonempty intersection.

2.3. An analogue of the DME for D-varieties. We fix from now on a satu-
rated existentially closed δ-field K of sufficiently great cardinality. So K serves as
a universal domain for δ-algebraic geometry (and hence, in particular, algebraic
geometry). We also fix a small δ-subfield k ⊂ K that will serve as the field of
coefficients.

Definition 2.1 (δ-DME for D-varieties). Suppose (V, s) is a D-variety over k. We
say that (V, s) satisfies the δ-DME over k, if for every k-irreducible D-subvariety
W ⊆ V , the following are equivalent:

(i) (W, s) is δ-primitive: there exists a point p ∈W (kalg) that is not contained
in any proper D-subvariety of W over k.

(ii) (W, s) is δ-locally-closed: it has a maximum proper D-subvariety over k.
(iii) (W, s) is δ-rational: k(W )δ ⊆ kalg.

Remark 2.2. As the model-theorist will notice, and as we will prove in the next sec-
tion, W being δ-locally closed means that the Kolchin generic type p of (W, s)](K)
over k is isolated. The model-theoretic meaning of δ-rationality is that p is weakly
orthogonal to the constants. On the other hand, it is not clear how to express a
priori the δ-primitivity of W as a model-theoretic property of p.

Without additional assumptions on k there is no hope for the δ-DME being
satisfied. For example, there are positive-dimensional δ-rational D-varieties over
any k, but if k is differentially closed then the only δ-locally closed D-varieties over
k are zero-dimensional. This is because every D-variety over a differentially closed
field k will have a Zariski dense set of D-points over k, and so a D-subvariety over
k containing all of them could not be proper. We are interested, however, in the
case when k is very much not differentially closed; namely, when δ is trivial on k.

Proposition 2.3. For any k-irreducible D-variety, δ-local-closedness implies δ-
primitivity. Moreover, if k ⊆ Kδ then δ-primitivity implies δ-rationality.

Proof. Let (W, s) be a k-irreducible D-variety.
Suppose (W, s) is δ-locally-closed, and denote by A the maximum proper D-

subvariety of W over k. Then p ∈ W (kalg) \ A(kalg) witnesses δ-primitivity. This
proves the first assertion.

Now suppose that k ⊆ Kδ, (W, s) is δ-primitive, and p ∈W (kalg) is not contained
in any proper D-subvariety over k. Suppose f ∈ k(W ) is a δ-constant. We want to
show that f ∈ kalg. We view it as a rational map ofD-varieties, f : (W, s)→ (A1, 0),
and suppose for now that it is defined at p. So f(p) ∈ A1(kalg). Because of our
additional assumption that k ⊆ Kδ, and hence kalg ⊆ Kδ, we have that f(p) is a
D-point of (A1, 0). Now, let Λ be the orbit of f(p) under the action of the absolute
Galois group of k. Then Λ is a finite D-subvariety of (A1, 0) over k. Hence the
Zariski closure of f−1(Λ) is a D-subvariety of W over k that contains p. It follows
that f−1(Λ) = W . So f is kalg-valued on all of W . We have shown that every
element of k(W )δ that is defined at p is in kalg.
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We have still to deal with the possibility that f is not defined at p. In that case,
writing f = a

b with a, b ∈ k[W ], we must have b(p) = 0. The fact that δf = 0

implies by the quotient rule that bδa = aδb. So either δa = δb = 0 or f = a
b = δa

δb .

Since a and b are defined at p, if δa = δb = 0 then a, b ∈ kalg by the previous
paragraph, and hence f ∈ kalg. If, on the other hand, f = δa

δb , then we iterate the
argument with (δa, δb) in place of (a, b). What we get in the end is that either

f ∈ kalg or f = δ`a
δ`b

for all ` ≥ 0. We claim the latter is impossible. Indeed, it

would imply that δ`b(p) = 0 for all `, and so p is contained in the D-subvariety
V (I) where I is the δ-ideal of k[W ] generated by b. But the assumption on p would
then imply that V (I) = W , contradicting the fact that b 6= 0. So f ∈ kalg, as
desired. �

So the question becomes:

Question 2.4. Under the assumption that δ is trivial on k, for which D-varieties
does δ-rationality imply δ-local-closedness?

Question 2.4 should be, we think, of general interest in differential-algebraic
geometry. In [1] it was pointed out that Manin kernels can be used to construct, in
all Krull dimensions at least three, examples that were δ-rational but not δ-locally
closed. Let us point out that in dimension ≤ 2 the answer is affirmative:

Proposition 2.5. If k ⊆ Kδ then every D-variety over k of dimension ≤ 2 satisfies
the δ-DME over k.

Proof. Suppose (V, s) is a D-variety over k of dimension at most 2. By Proposi-
tion 2.3 it suffices to show that if W ⊆ V is a k-irreducible δ-rational D-subvariety
over k then it has a maximum proper D-subvariety over k. We may assume that
dimW > 0. Now, it is a known fact that δ-rationality implies the existence of only
finitely many D-subavrieties of codimension one over k. Indeed, this is an unpub-
lished theorem of Hrushovski [10, Proposition 2,3]; see [1, Theorem 6.1] and [8, The-
orem 4.2] for published generalisations. So it remains to consider the 0-dimensional
D-subvarieties of W over k. But as k ⊆ Kδ, the union of these is contained in
the Zariski closure X of (W, s)](K) ∩ W (Kδ). Note that s restricts to the zero
section on X, and hence X is a D-subvariety of W over k that must be proper by
δ-rationality of (W, s). So the union of X and the finitely many codimension one
D-subvarieties of W form the maximal proper D-subvariety over k. �

We will give a sufficient condition for δ-rationality to imply δ-local-closedness,
and hence for the δ-DME, having to do with analysability to the constants in the
model theory of differentially closed fields. We will then use this condition to prove
the δ-DME for D-groups over the constants.

2.4. Maximum D-subvarieties. Here we look closer at which D-varieties over k
have a proper D-subvariety over k that contains all other proper D-subvarieties
over k. This is something that never happens in the pure algebraic geometry
setting: every variety over k has a Zariski dense set of kalg-points, and each kalg-
point is contained in a finite subvariety defined over k. So a k-irreducible variety
cannot have a maximum proper subvariety over k. In the enriched context of D-

varieties there will be many D-points over a differential closure of k, say k̃, but a

k̃-point need not live in a proper D-subvariety defined over k. So D-points are not
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an obstacle to the existence of a maximum proper D-subvariety. In fact, as the
following lemma points out, the existence of a maximum proper D-subvariety is a
natural property to consider from both the Kolchin topological and model-theoretic
points of view.

We continue to work in our sufficiently saturated differentially closed field (K, δ),
and fix a δ-subfield k of coefficients.

Lemma 2.6. Suppose (V, s) is a k-irreducible D-variety. The following are equiv-
alent.

(i) (V, s) is δ-locally closed.
(ii) (V, s) has finitely many maximal proper k-irreducible D-subvarieties.
(iii) Λ := (V, s)](K) \

⋃
{(W, s)](K) : W ( V D-subvariety over k} is Kolchin

constructible.
(iv) The Kolchin generic type of (V, s)](K) over k is an isolated type.

Proof. (i) =⇒ (ii). Let W be the maximum proper D-subvariety over k. The
k-irreducible components of W are D-subvarieties of V , see for example [14, Theo-
rem 2.1]. Every proper k-irreducible D-subvariety of V is contained in one of these
components. So the maximal proper k-irreducible D-subvarieties of V are precisely
the k-irreducible components of W .

(ii) =⇒ (iii). Let W1, . . . ,W` be the maximal proper k-irreducible D-subvarieties
of V . Then⋃
{(W, s)](K) : W ( V D-subvariety over k} = (W1, s)

](K) ∪ · · · ∪ (W`, s)
](K).

(iii) =⇒ (iv). The Kolchin generic type of (V, s)](K) over k is the complete
type p(X) in DCF0 axiomatised by the formulas saying that “X ∈ (V, s)](K)”,
and, for each proper Kolchin closed subset A of (V, s)](K) over k, the formula
“X 6∈ A”. Note that as (V, s)](K) is defined by ∇(X) = s(X), the occurrences
of each δX in the defining equations of A can be replaced by polynomials, so that
A = AZar ∩ (V, s)](K), where AZar denotes the Zariski closure of A in V . When A
is over k, we have that AZar is a D-subvariety of V over k. It follows that the set of
realisations of p is precisely Λ, so that Λ being Kolchin constructible implies that
p is axiomatised by a single formula, that is, it is isolated.

(iv) =⇒ (i). Let Λ be as in statement (iii). As we have seen, this is the set of re-
alisations of the Kolchin generic type of (V, s)](K) over k. The latter being isolated
implies, by quantifier elimination, that Λ is Kolchin constructible. By saturation,
this in turn implies that A :=

⋃
{(W, s)](K) : W ( V D-subvariety over k} is a

finite union, and hence is itself a proper Kolchin closed subset over k. Then AZar

is the maximum proper D-subvariety over k. �

The following lemma will be useful in showing that certain D-varieties satisfy
the equivalent conditions of Lemma 2.6.

Lemma 2.7. Suppose f : (V, s) → (W, t) is a dominant D-rational map of k-
irreducible D-varieties over k. The following are equivalent

(i) (V, s) has a maximum proper D-subvariety over k.
(ii) (W, t) has a maximum proper D-subvariety over k, and for some (equiv-

alently every) k-generic D-point η of W , the fibre Vη := f−1(η)Zar has a
maximum proper D-subvariety over k(η).
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Proof. We show how this follows easily from basic properties of isolated types,
leaving it to the reader to make the straightforward, but rather unwieldy, translation
it into an algebro-geometric argument if desired.

(i) =⇒ (ii). Suppose a ∈ (V, s)](K) is a k-generic D-point. Since f is a dominant
D-rational map, f(a) ∈ (W,T )](K) is also k-generic. By characterisation (iv) of
the previous lemma, tp(a/k) is isolated. As f(a) is in the definable closure of a
over k, it follows that tp(f(a)/k) is isolated. Hence, (W, t) has a maximum proper
D-subvariety over k.

Now fix η ∈ (W, t)](K) a k-generic D-point, and let a be a k(η)-generic D-point
of the fibre Vη. Then a is k-generic in (V, t), and hence tp(a/k) is isolated. It
follows that the extension tp(a/k(η)) is also isolated. So Vη has a maximum proper
D-subvariety over k(η).

(ii) =⇒ (i). Fix η ∈ (W, t)](K) a k-generic D-point such that Vη has a max-
imum proper D-subvariety over k(η). Let a be a k(η)-generic D-point of Vη. So
tp(a/k(η)) and tp(η/k) are both isolated, implying that tp(a/k) is isolated. Since
a ∈ (V, s)](K) is k-generic, condition (i) follows. �

2.5. Compound isotriviality. Our sufficient condition for δ-rationality to imply
δ-local-closedness will come from looking at isotrivial D-varieties.

Definition 2.8. An irreducible D-variety (V, s) over k is said to be isotrivial if
there is some δ-field extension F ⊇ k such that (V, s) is D-birationally equivalent
over F to a D-variety of the form (W, 0) where W is defined over the constants
F δ and 0 is the zero section. We will say that a possibly reducible D-variety is
isotrivial if every irreducible component is.

This definition comes from model theory, it is a geometric translation of the state-
ment that the Kolchin generic type of (V, s)](K) over k is Kδ-internal. Note that
there is some tension, but no inconsistency, between isotriviality and δ-rationality;
for example, (W, 0) is far from being δ-rational, instead of there being no new δ-
constants in the rational function field we have that δ is trivial on all of k(W ).
The reasons these notions are not inconsistent is that the isotrivial (V, s) is only of
the form (W, 0) after base change – that is, over additional parameters – and that
makes all the difference.

Fact 2.9. A k-irreducible D-variety that is at once both δ-rational and isotrivial
must be δ-locally closed.

Proof. Suppose (V, s) is a k-irreducible isotrivial D-variety with k(V )δ ⊆ kalg. We
want to show that V has a maximum proper D-subvariety over k. The proof we give
makes essential use of model theory. We will show how the statement translates to
the well-known fact that a type internal to the constants but weakly orthogonal to
the constants is isolated.

Let p be the Kolchin generic type of (V, s)](K) over k. By Lemma 2.6, it suffices
to show that p is isolated. That in turn reduces to showing that every extension of p
to kalg is isolated. Fix q an extension of p to kalg. So q is the Kolchin generic type of

(V̂ , s)](K) over kalg, for some irreducible component V̂ of V . Isotriviality of (V, s)

implies isotriviality of (V̂ , s), and this means that q is internal to the constants Kδ,
see for example [16, Fact 2.6]. By stability, this implies that the binding group
G = Aut(q/kalg(Kδ)) is type-definable over kalg, see for instance [11, Appendix B].
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In fact, G is definable: G lives in the constants and by ω-stability of the induced
structure on the constants, every type-definable group in Kδ is a definable group.
So we have a definable group acting definably on the set of realisations of q.

On the other hand, for all a |= q we have that

kalg(a)δ ⊆ (k(a)alg)δ = (k(a)δ)alg ⊆ kalg,

where the last containment uses our assumption on k(V ) = k(a). This shows that
q is weakly orthogonal to Kδ. So the action of G on the set of realisations of q is
transitive. As G is definable, the set of realisations of q must be definable – that is,
q is isolated. �

Using Lemma 2.7 we can extend Fact 2.9 to the case of D-varieties that are built
up by a finite sequence of fibrations by isotrivial D-subvarieties.

Definition 2.10. An irreducible D-variety (V, s) over k is said to be compound
isotrivial if there exists a sequence of irreducible D-varieties (Vi, si) over k, for
i = 0, . . . , `, with dominant D-rational maps over k

V = V0
f0 // V1

f1 // · · · // V`−1

f`−1 // V` = 0

where 0 denotes an irreducible zero-dimensionalD-variety, and such that the generic
fibres of each fi are isotrivial. That is, for each i = 0, . . . , `− 1, if η is a k-generic
D-point in Vi+1, then f−1

i (η)Zar, which is a k(η)-irreducible D-subvariety of (Vi, si),
is isotrivial. We say (V, s) is compound isotrivial in ` steps.

While isotriviality is equivalent to the Kolchin generic type being internal to the
constants, compound isotriviality corresponds to that type being analysable in the
constants. As this is a less familiar notion, even among model theorists, we spell
out the equivalence here.

Lemma 2.11. Suppose (V, s) is an irreducible D-variety over k, and a ∈ (V, s)](K)
is a k-generic D-point. Then (V, s) is compound isotrivial if and only if the type of
a over k in DCF0 is analysable in Kδ.

Proof. Analysability in Kδ means that there are tuples a = a0, a1, . . . , a`, such that

(i) ai is in the δ-field generated by ai−1 over k, for i = 1, . . . , `−1, a` ∈ k, and
(ii) the type of ai over the algebraic closure of the δ-field generated by k(ai+1)

is internal to Kδ.

If (V, s) is compound isotrivial one simply takes ai = fi−1(ai−1) for i = 1, . . . , `.
Condition (i) is clear – in fact with “δ-field generated by” replaced by “field gen-
erated by” – and condition (ii) follows from the fact that ai will be a k(ai+1)alg-
generic D-point of one of the irreducible components of f−1

i (ai+1)Zar, all of which
are isotrivial. For the converse, given a = a0, a1, . . . , a` satisfying condition (i)
and (ii), one first replaces ai with (ai, δ(ai), . . . , δ

n(ai)) for some sufficiently large
n so that ai is a k-generic D-point of an irreducible D-variety (Vi, si) over k. This
sequence of D-varieties will witness the compound isotriviality, using the fact that
the irreducible components of f−1

i (ai+1)Zar are all conjugate over k(ai+1) and hence
the isotriviality of one implies the isotriviality of them all. �

Remark 2.12 (Stability under base change). The definition of compound isotrivial-
ity seems to be sensitive to parameters; the D-varieties Vi and the D-rational maps
fi need also be defined over k. In fact the notion is stable under base change: if
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an irreducible D-variety (V, s) over k is compound isotrivial when viewed as a D-
variety over some δ-field extension F ⊇ k then it was already compound isotrivial
over k. A model-theoretic re-statement of this is the well-known fact that a station-
ary type with a nonforking extension that is analysable in the constants is already
analysable in the constants. We leave it to the reader to formulate a geometric
argument.

Note also that (compound) isotriviality is preserved by D-birational maps.

Proposition 2.13. For an irreducible compound isotrivial D-variety over k,
δ-rationality implies δ-local-closedness.

Proof. Suppose (V, s) is an irreducible compound isotrivial D-variety over k with
k(V )δ ⊆ kalg. We need to show that V has a maximum proper D-subvariety
over k. We proceed by induction on the number of steps witnessing the compound
isotriviality. The case ` = 0 is vacuous. Suppose we have a compound isotrivial
(V, s) witnessed by

V = V0
f0 // V1

f1 // · · · // V`−1

f`−1 // V` = 0

with ` ≥ 1. Then V1 is compound isotrivial in ` − 1 steps, and as k(V1) is a δ-
subfield of k(V ) by dominance of f0, the induction hypothesis applies to give us a
maximum proper D-subvariety of V1 over k.

On the other hand, the generic fibre Vη := f−1
0 (η)Zar is an isotrivial k(η)-

irreducible D-subvariety of V ; where η is a k-generic D-point of V1. Moreover,
as k(η)(Vη) = k(V ), Vη is δ-rational and therefore Fact 2.9 applies to Vη and we
obtain a maximum proper D-subvariety over k(η). Now Lemma 2.7 implies that V
has a maximum proper D-subvariety over k. �

Corollary 2.14. Suppose k ⊆ Kδ and (V, s) is a D-variety over k with the property
that every irreducible D-subvariety of V over kalg is compound isotrivial. Then
(V, s) satisfies δ-DME.

Proof. By Proposition 2.3, it suffices to show that every δ-rational k-irreducible
D-subvariety (W, s) is δ-locally closed. Note that if k = kalg then (W, s) is abso-
lutely irreducible, and compound isotrivial by assumption, so that δ-local-closedness
follows by Proposition 2.13. In general, let (W0, s) be an absolutely irreducible
component of (W, s). It is over kalg. The δ-rationality of (W, s) over k implies the
δ-rationality of (W0, s) over kalg – see for example the last paragraph of the proof of
Fact 2.9. By assumption (W0, s) is compound isotrivial, and so by Proposition 2.13
it is δ-locally closed over kalg. We have shown that every irreducible component of
(W, s) is δ-locally closed over kalg, and it is not hard to see, by taking the union
of the maximum proper D-subvarieties of these components, for example, that this
implies that (W, s) is δ-locally closed, as desired. �

2.6. D-groups over the constants. A D-group is a D-variety (G, s) over k whose
underlying variety G is an algebraic group, and such that the section s : G → τG
is a morphism of algebraic groups. (Note that there is a unique algebraic group
structure on τ(G) which makes the embedding ∇ : G(K) → τG(K) a homomor-
phism.) The notions of D-subgroup and homomorphism of D-groups are the natural
ones, with the caveat that, unless stated otherwise, parameters may come from a
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larger δ-field. The quotient of a D-group by a normal D-subgroup admits a natural
D-group structure. The terms connected and connected component of identity when
applied to D-groups refer just to the underlying algebraic group, though note that
the connected component of identity of a D-group over k is a D-subgroup.

In the context of D-groups isotriviality is better behaved. A connected D-group
(G, s) is isotrivial if and only if it is isomorphic as a D-group to one of the form
(H, 0) where H is an algebraic group over the constants and 0 is the zero section. So
one remains in the category of D-groups, and D-birational equivalence is replaced
by D-isomorphism. See the discussion around Fact 2.6 of [16] for a proof of this. In
particular, every D-subvariety of an isotrivial D-group is itself isotrivial. Quotients
of isotrivial D-groups are also isotrivial. Moreover, by [22, Corollary 3.10], if a
D-group (G, s) has a finite normal D-subgroup H such that G/H is isotrivial, then
(G, s) must have been isotrivial to start with. We also note that, as (compound)
isotriviality is preserved under D-birational maps, when working inside a D-group
(compound) isotriviality is preserved under translation by D-points of G (as these
translations will in fact be D-automorphisms of G).

The following fact is mostly a matter of putting together various results in the
literature on D-groups. As we will see, it will imply that every D-subvariety of a
D-group over the constants is compound isotrivial in at most 3 steps. At this point
it is worth noting that the set of D-points of a D-group is a subgroup definable
in DCF0 of finite Morley rank. Moreover, the ] functor is an equivalence between
the categories of D-groups over k and finite Morley rank groups in DCF0 definable
over k (see [16, Fact 2.6]).

Fact 2.15. Suppose (G, s) is a connected D-group over the constants.

(a) The centre Z(G) is a normal D-subgroup of G over the constants, and the
quotient G/Z(G) is an isotrivial D-group.

(b) Let H be the algebraic subgroup of points in Z(G) where s agrees with the
zero section. Then Z(G)/H is an isotrivial D-group.

Proof. For a proof that Z(G) is a D-subgroup see [16, 2.7(iii)]. That G/Z(G)
is isotrivial was originally proved by Buium [6] in the centerless case, and then
generalised by Kowalski and Pillay in [16, 2.10].

For part (b), note first of all that H is a D-subgroup of Z(G) by definition;
the zero section does map to the tangent bundle of H. Now, it suffices to show
that Z◦/H◦ is isotrivial where Z◦ is the connected component of identity of Z(G)

and H◦ := Z◦ ∩H. Let Z :=
(
Z◦, s

)]
(K), the subgroup of D-points of Z. Then

(H◦, s)](K) = Z(Kδ), the δ-constant points of Z. These are now commutative
δ-algebraic groups. As the ] functor is an equivalence of categories, isotriviality
of Z◦/H◦ will follow once we show that Z/Z(Kδ) is definably isomorphic (over
some parameters) to (Kδ)n for some n. Because Z◦ is a connected commutative
algebraic group over the constants, there exists a δ-algebraic group homomorphism
`d : Z◦ → L(Z◦) over k0, where L(Z◦) is the Lie algebra of Z◦, the tangent space at
the identity. This homomorphism is called the logarithmic derivative and is defined
as

`d(X) = ∇(X) · (s(X))−1

where the operations occur in TZ◦. One can check that `d is surjective with kernel
Z◦(Kδ) (a proof appears in [17, §3], see also [15, §V.22]). So Z/Z(Kδ) is definably
isomorphic to a δ-algebraic subgroup, F , of L(Z◦). Since L(Z◦) is a vector group,
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F is a finite-dimensional Kδ-vector subspace (see, for example, [21, Fact 1.3]), and
hence definably isomorphic over a basis to some (Kδ)n. �

Suppose (G, s) is a D-group over a δ-field k and (H, s) is a D-subgroup over k
Even when H is not normal, it makes sense to consider the quotient space G/H
as an algebraic variety, and s will induce on G/H the natural structure of a D-
variety (G/H, s̄) over k, in such a way that the quotient map π : G → G/H is a
D-morphism. See [16, Fact 2.7(ii)], for details. Now if α is a D-point of (G/H, s̄),
then the fibre π−1(α) is a D-subvariety over k(α); and for β a D-point of this fibre
we have π−1(α) = β + H. So each fibre

(
π−1(α), s) is isomorphic to (H, s) over

k(β). One could develop in this context the notion of “D-homogeneous spaces”.
Using Fact 2.15 we obtain the following highly restrictive property on the struc-

ture of D-subvarieties of D-groups over the constants.

Proposition 2.16. Suppose (G, s) is a connected D-group over k0 ⊆ Kδ. If k is
any δ-field extension of k0 and W is any irreducible D-subvariety of G over k, then
W is compound isotrivial in at most 3 steps.

In particular, if W is δ-rational then it is δ-locally closed.

Proof. Consider the normal sequence of D-subgroups

GB Z(G)BH B 0

where Z(G) is the centre of G and H is the algebraic subgroup of points in Z(G)
where s agrees with the zero section. Consider the corresponding sequence of irre-
ducible D-varieties and D-morphisms over k0

G
π0 // G/H

π1 // G/Z(G)
π2 // 0 .

Since G/Z(G), Z(G)/H, and H are isotrivial – the first two by Fact 2.15 and the
last as s|H is the zero section – this exhibits G as compound isotrivial in three
steps. We can then obtain the same result for any irreducible D-subvariety of G by
using the fact that any element of (G, s)](K) is a product of two generic elements.
Alternatively we can argue as follows, keeping in mind that every D-subvariety of
an isotrivial D-group is itself isotrivial.

If W ⊆ G is an irreducible D-variety over k, then we get a sequence of dominant
D-morphisms

W
f0 // W1

f1 // W2
f2 // 0

where W1 ⊆ G/H is the Zariski closure of π0(W ), and W2 ⊆ G/Z(G) is the Zariski
closure of π1(W1), and the fi are the appropriate restrictions of the πi. Then W2

is isotrivial as it is a D-subvariety of G/Z(G). If α is a D-point of W2 then f−1
1 (α)

is a D-subvariety of π−1
1 (α) which is isomorphic as a D-variety to Z(G)/H. So the

fibres of f1 over D-points are all isotrivial D-subvarieties of W1. If β is a D-point
of W1 then f−1

0 (β) is a D-subvariety of π−1
0 (β) which is isomorphic as a D-variety

to H. So the fibres of f0 over D-points are all isotrivial. Hence W is compound
isotrivial in 3 steps.

The “in particular” clause is by Proposition 2.13. �

We have now proved Theorem A of the introduction:

Corollary 2.17. If k ⊆ Kδ then every D-group over k satisfies δ-DME.
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Proof. Suppose (G, s) is a D-group over k and W is an irreducible D-subvariety of
G over kalg. Then, over kalg, it is isomorphic to an irreducible D-subvariety of the
connected component of identity, G0. Applying Proposition 2.16 to G0, we have
that W is compound isotrivial. So every irreducible D-subvariety of G over kalg is
compound isotrivial. The δ-DME now follows from Corollary 2.14. �

2.7. Differential Hopf algebras. In this section we give equivalent algebraic for-
mulations of the δ-DME and our results so far. This will help us make the con-
nection to the classical DME, which is about noncommutative associative algebras
and as such does not have a direct geometric formulation.

We restrict our attention to the case when δ is trivial on the base field k.
As explained in §2.1, the standard geometry-algebra duality which assigns to

a variety its co-ordinate ring, induces an equivalence between the category of k-
irreducible affine D-varieties (V, s) and that of differential rings (R, δ) where R is
an affine k-algebra and δ is a k-linear derivation. This equivalence associates to a
k-irreducible D-subvariety of V a prime δ-ideal of R. Using this dictionary, we can
easily translate the geometric Definition 2.1, in the case when k ⊆ Kδ, into the
following algebraic counterpart.

Definition 2.18 (δ-DME for affine differential algebras). Suppose R is an affine
k-algebra equipped with a k-linear derivation δ. We say that (R, δ) satisfies the
δ-DME if for every prime δ-ideal P of R, the following conditions are equivalent:

(i) P is δ-primitive: There exists a maximal ideal m of R such that P is
maximal among the prime δ-ideals contained in m.

(ii) P is δ-locally-closed: The intersection of all the prime δ-ideals of R that
properly contain P is a proper extension of P .

(iii) P is δ-rational: Frac(R/P )δ is contained in kalg.

The algebraic counterpart of an affine algebraic group G over k is the commuta-
tive Hopf k-algebra R = k[G], where the group law G×G→ G induces a co-product
∆ : R→ R⊗k R. So what is the algebraic counterpart of a D-group (G, s) over k?
The following lemma says that it is a differential Hopf k-algebra, a commutative
Hopf k-algebra R equipped with a k-linear derivation δ that commutes with the
coproduct, where δ acts on R⊗k R by δ(r1 ⊗ r2) = δr1 ⊗ r2 + r1 ⊗ δr2.

Lemma 2.19. Suppose k ⊆ Kδ and let (G, s) be a D-variety defined over k such
that G is a connected affine algebraic group. Let δ on R = k[G] be the corresponding
k-linear derivation. Then s : G → TG is a group homomorphism if and only if δ
commutes with the coproduct.

Proof. Unravelling the fact that s induces the derivation δ on k[G] and that the
group operation m : G × G → G induces the coproduct ∆ on k[G], we have that
for all f ∈ k[G],

(2.1) ∆(δf) = δ∆(f) ⇐⇒ df(s(m(y, z))) = d(f ◦m)(s(y), s(z))

where (y, z) are coordinates for G×G. But

d(f ◦m)(s(y), s(z)) = df ◦ dm(s(y), s(z)) = df(s(y) ∗ s(z)),
where ∗ denotes the group operation dm : TG×TG→ TG. And so the right hand
side of (2.1) is equivalent to

df(s(m(y, z))) = df(s(y) ∗ s(z)).
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But this, asserted for all f ∈ k[G], is equivalent to s(m(y, z)) = s(y) ∗ s(z), i.e.,
that s is a group homomorphism. �

In other words, the study of connected affine D-groups over the constants is the
same thing as the study of affine differential Hopf k-algebras. So our Theorem A
becomes:

Theorem 2.20. Every commutative affine differential Hopf algebra over a field of
characteristic zero satisfies δ-DME.

Proof. By Lemma 2.19 our differential Hopf algebra is of the form k[G] for some
connected affine D-group (G, s) with k ⊆ Kδ. By Corollary 2.17 (G, s) satisfies the
δ-DME. So (k[G], δ) satisfies δ-DME. �

3. Twisting by a group-like element

As it turns out, the application to the classical Dixmier-Moeglin problem that we
have in mind, and that will be treated in §4, requires a generalisation of Theo-
rem 2.20. Instead of working with differential Hopf algebras, we need to consider
Hopf algebras equipped with derivations that do not quite commute with the co-
product. Suppose R is a commutative affine Hopf k-algebra. We will use Sweedler
notation1 and write ∆(r) =

∑
r1⊗ r2 for any r ∈ R. Now, for a k-linear derivation

δ to commute with ∆ on R means that for all r ∈ R,

∆(δr) =
∑

δr1 ⊗ r2 + r1 ⊗ δr2.

We wish to weaken this condition by asking instead simply that there exists some
a ∈ R satisfying ∆(a) = a⊗ a – that is, a is a group-like element of R – such that
for all r ∈ R,

(3.1) ∆(δr) =
∑

δr1 ⊗ r2 + ar1 ⊗ δr2.

That is, we ask δ to be what Panov [20] calls an a-coderivation. We wish to prove:

Theorem 3.1. Suppose k is a field of characteristic zero, R is a commutative affine
Hopf k-algebra, and δ is a k-linear derivation on R that is an a-coderivation for
some group-like a ∈ R. Then (R, δ) satisfies the δ-DME.

When a = 1 this is just the case of affine differential Hopf k-algebras, and hence
is dealt with by Theorem 2.20. The general case requires some work. Throughout
this section k is a fixed field of characteristic zero.

Let us begin with a geometric explanation of what this twisting by a group-like
element means. First of all, we have R = k[G] for some connected affine algebraic
group G over k, with the coproduct ∆ on R induced by the group operation on
G, and the derivation δ on R induced by a D-variety structure s : G→ TG. Note
that δ being a k-derivation implies that k ⊆ Kδ and so τG = TG. Now, as G is an
affine algebraic group, we may assume it is an algebraic subgroup of GLn, so that
TG ⊆ G×Matn. Writing s = (id, s) where s : G→ Matn, we want to express as a
property of s what it means for δ to be an a-coderivation. That a ∈ R is group-like
means that a : G→ Gm is a homomorphism of algebraic groups.

1Recall that in Sweedler notation
∑

r1 ⊗ r2 is used to denote an expression of the form∑d
j=1 rj,1 ⊗ rj,2. We will use Sweedler notation throughout, hopefully without confusion.
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Lemma 3.2. Suppose G ⊆ GLn is a connected affine algebraic group over k,
a : G → Gm is a homomorphism, and s = (id, s) : G → TG ⊆ G × Matn is a
D-variety structure on G over k. Then the corresponding k-linear derivation δ on
k[G] is an a-coderivation if and only if

(3.2) s(gh) = s(g)h+ a(g)gs(h)

for all g, h ∈ G, where all addition and multiplication is in the sense of matrices.

Proof. Note that for r ∈ k[G], ∆(δr) ∈ k[G×G] is given by

∆(δr)(g, h) = dghr
(
s(gh)

)
for all g, h ∈ G, where dr : TG→ A2 is the differential of r : G→ A1. On the other
hand, writing ∆(r) =

∑
r1 ⊗ r2 we have∑

(δr1 ⊗ r2 + ar1 ⊗ δr2)(g, h) =
∑

dgr1(s(g)) r2(h) + a(g)r1(g) dhr2(s(h))

= d(g,h)

(∑
r1 ⊗ r2

)
(s(g), a(g)s(h))

= d(g,h)(∆r)(s(g), a(g)s(h))

where the second equality uses the fact that a(g) is a scalar. Now, as an element
of k[G × G], ∆(r) = r ◦ m where m : G × G → G is the restriction of matrix
multiplication on GLn. Note that when we differentiate matrix multiplication we
get d(g,h)m(A,B) = Ah+ gB, for all g, h ∈ GLn and A,B ∈ Matn. Hence,∑

(δr1 ⊗ r2 + ar1 ⊗ δr2)(g, h) = d(g,h)(∆r)(s(g), a(g)s(h))

= dghr ◦ d(g,h)m(s(g), a(g)s(h))

= dghr(s(g)h+ ga(g)s(h))

= dghr
(
s(g)h+ a(g)gs(h)

)
.

Hence, δ being an a-coderivation, that is equation (3.1), is equivalent to

dghr
(
s(gh)

)
= dghr

(
s(g)h+ a(g)gs(h)

)
for all r ∈ k[G]. But this implies

s(gh) = s(g)h+ a(g)gs(h)

as desired. �

Definition 3.3. When G is an affine algebraic group and (G, s) is a D-variety
structure such that (3.2) holds, we will say that (G, s) is an a-twisted D-group.

The following family of examples of 2-dimensional twisted D-groups will play an
important role in the proof.

Example 3.4. Let c ∈ k be a parameter. Let R = k[x, 1
x , y] with δ the k-linear

derivation induced by δ(x) = xy and δ(y) = y2

2 + c(1 − x2). Note that R is the
co-ordinate ring of the algebraic subgroup E ≤ GL2 made up of matrices of the
form (

x y
0 1

)
,
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and hence is a commutative affine Hopf k-algebra. We denote by (E, tc) the D-
variety structure on E induced by δ. Writing tc = (id, tc), we have

tc

(
a b
0 1

)
=

(
ab b2

2 + c(1− a2)
0 0

)
.

Now a straightforward computation shows that

tc

((
a b
0 1

)(
a′ b′

0 1

))
=

(
a2a′b′ + aa′b a2(b′)2

2 + abb′ + b2

2 + c(1− (aa′)2)
0 0

)

= tc

(
a b
0 1

)(
a′ b′

0 1

)
+ a

(
a b
0 1

)
tc

(
a′ b′

0 1

)
.

That is, (E, tc) is an x-twisted D-group. (Note that x ∈ R is group-like.) Note
that since (E, tc) is not a D-group, we cannot use Theorem 2.20 to deduce the
δ-DME. However, since the Krull dimension is two, (E, tc) does satisfy the δ-DME
(see Proposition 2.5).

Our strategy for proving Theorem 3.1 is to show that every a-twisted D-group
over the constants admits the example described above as an image, with each
fibre having the property that every D-subvariety is compound isotrivial. From the
δ-DME for (E, tc), together with our earlier work around compound isotriviality
and maximum proper D-subvarieties, we will then be able to conclude that every
a-twisted D-group satisfies the δ-DME.

To relate an arbitrary a-twisted D-group to one of those considered in Exam-
ple 3.4, we will require the following proposition, whose proof is rather technical,
and for which it would be nice to give a conceptual explanation.

Proposition 3.5. Suppose R is a commutative affine Hopf k-algebra, and δ is a
k-linear derivation on R that is an a-coderivation for some group-like a ∈ R. Then
for some c ∈ k we have aδ2a = 3

2 (δa)2 + c(a2 − a4).

We delay the proof of this proposition until we have established the preliminary
Lemmas 3.6 and 3.7 below, for which we fix a commutative affine Hopf k-algebra,
R, equipped with a k-linear derivation, δ, such that δ is also an a-coderivation for
some group-like a ∈ R. As a is group-like it is invertible in R. We fix the following
sequence of elements in R:

u0 := a

u1 :=
δa

a

u2 := δu1 −
u2

1

2
um := δ(um−1) for m ≥ 3.

Note that the desired identity aδ2a = 3
2 (δa)2 + c(a2 − a4) is equivalent to u2 =

c(1− a2); this is our eventual aim.

Lemma 3.6. For all m ≥ 1, we have

∆(um) = um ⊗ 1 + am ⊗ um +

m−1∑
j=2

cj,ma
jum−j ⊗ uj +

∑
fi ⊗ gi
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where the cj,m are positive (nonzero) integers, the fi ∈ (u1, . . . , um−1)2k[u0, . . . , um−1],
and the gi ∈ k[u0, . . . , um−1].

Proof. We can compute the coproducts of the elements u0, u1, . . . using the fact
that a = u0 is group-like and δ is an a-coderivation:

∆(u0) = a⊗ a

∆(u1) = (
1

a
⊗ 1

a
)(δa⊗ a+ a2 ⊗ δa)

= u1 ⊗ 1 + a⊗ u1

∆(u2) = δu1 ⊗ 1 + δa⊗ u1 + a2 ⊗ δu1 −
u2

1

2
⊗ 1− au1 ⊗ u1 − a2 ⊗ u2

1

2

= u2 ⊗ 1 + a2 ⊗ u2

Then for m = 1, 2, the conclusion of the statement of the lemma follows from the
above computations with fi = gi = 0 and the middle sum being empty. Now one
computes ∆(um+1) = ∆(δum) for m ≥ 2, using the inductively given expression
for ∆(um) and the fact that δ is an a-coderivation. The rest is a straightforward
brute force computation that we leave to the reader. �

Lemma 3.7. There exist n ≥ 1, a polynomial P ∈ k[u0, . . . , un−1] and some r ≥ 0
such that

un =
P (u0, . . . , un−1)

ur0
.

Proof. Since R is finitely generated as a k-algebra, this sequence (um) cannot be
algebraically independent over k. Choose n minimal such that (u0, . . . , un) is alge-
braically dependent over k. Note that if n = 0 then a = u0 is a constant and so
u1 = u2 = 0 by definition. So we will assume that n > 0.

So there is some d ≥ 1 such that

(3.3) udn +
∑
i<d

Ai(u0, . . . , un−1)uin = 0,

with A0, . . . , Ad−1 rational functions over k. We may assume that d is minimal.
Our first step is to show that d = 1.

Since R = k[G] for some connected affine algebraic group G over k, we have
that R ⊗ R is a domain. Indeed, R ⊗ R = k[G × G] and G × G is a connected
affine algebraic group. We can thus work inside the fraction field of R ⊗ R. Let
F be the subfield which is the fraction field of k[u0, . . . , un−1] ⊗k k[u0, . . . , un−1].
Note that by the minimality of d, {1, un, . . . , ud−1

n } is linearly independent over
k(u0, . . . , un−1), from which it follows that {uin ⊗ ujn : 0 ≤ i, j < d} is linearly
independent over F . Applying ∆ to both sides of Equation (3.3), Lemma 3.6 gives
us that

(un ⊗ 1 + an ⊗ un)d ∈
∑
i<d

F · (un ⊗ 1 + an ⊗ un)i ⊆
∑
i+j<d

F · (uin ⊗ ujn).

On the other hand, udn ⊗ 1 and and ⊗ udn are also in
∑
i+j<d F · (uin ⊗ ujn) by (3.3).

It follows that

d−1∑
i=1

(
d

i

)
an(d−i)uin ⊗ ud−in ∈

∑
i+j<d

F · (uin ⊗ ujn).
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If d > 1 then ud−1
n ⊗ un appears with a nonzero coefficient on the left-hand side

but with zero coefficient on the right-hand side. This contradicts the F -linear
independence of (uin ⊗ ujn : 0 ≤ i, j < d).

So d = 1, and we have that

(3.4) un =
P (u0, . . . , un−1)

Q(u0, . . . , un−1)
,

for some relatively prime polynomials P and Q over k. We aim to show that Q is
a monomial in u0.

First we argue thatQ⊗Q divides ∆(Q) in S := k[u0, . . . , un−1]⊗kk[u0, . . . , un−1],
which note is the polynomial ring over k in the variables ui ⊗ 1, 1⊗ uj , and hence
is a UFD. Indeed,

∆(P ) = ∆(Q)∆(un) by applying ∆ to both sides of Equation (3.4)

= ∆(Q)(un ⊗ 1 + an ⊗ un + y) by Lemma 3.6, for some y ∈ S
= ∆(Q) ((P/Q)⊗ 1 + an ⊗ (P/Q) + y)

We can then multiply both sides by 1⊗Q to see that ∆(Q)((P/Q)⊗Q) ∈ S. Hence,
multiplying by Q⊗1, we see that Q⊗1 divides ∆(Q)(P⊗Q) = ∆(Q)(P⊗1)(1⊗Q).
Since P and Q are relatively prime, Q⊗1 divides ∆(Q). A similar argument shows
that 1⊗Q divides ∆(Q). Since we are working in a UFD and 1⊗Q and Q⊗ 1 are
relatively prime, we see that Q⊗Q divides ∆(Q), as desired.

Let i ≤ n− 1 be the largest index for which ui appears in Q. Then we can write

Q =
∑M
j=0 u

j
iQj(u0, u1, . . . , ui−1) with M > 0 and QM nonzero. So

Q⊗Q = (uMi ⊗ uMi )(QM ⊗QM ) +
∑
j,k<M

(uji ⊗ u
k
i )(Qj ⊗Qk)

while, if i ≥ 1, then

∆(Q) =

M∑
j=0

∆(ui)
jQj(∆(u0), . . . ,∆(ui−1)) =

∑
`+m≤M

f`,m(u`i ⊗ umi ).

where f`,m ∈ k[u0, . . . , ui−1]⊗kk[u0, . . . , ui−1], by Lemma 3.6. (Note that Lemma 3.6
fails for u0, so we are using that i ≥ 1 in the above calculation.) But this contra-
dicts Q⊗Q dividing ∆(Q), since uMi ⊗uMi appears in the former while in the latter
no u`i ⊗ umi appears with `,m ≥ M . So it must be that i = 0 and we have shown
that Q is a polynomial in u0.

Multiplying by a nonzero scalar if necessary, we may assume that Q is in fact a
polynomial in u0 with leading coefficient 1. Let M denote the degree of Q. Then
Q(u0)⊗Q(u0) divides ∆(Q) = Q(u0⊗u0) in S, recalling that u0 = a is group-like.
Since both Q(u0) ⊗ Q(u0) and Q(u0 ⊗ u0) are polynomials of total degree 2M in
the variables u0 ⊗ 1 and 1 ⊗ u0 and since they both have leading coefficient 1, we
see that they must be the same. In particular, Q(u0) ⊗ Q(u0) is a polynomial in
u0 ⊗ u0 with leading coefficient 1, which implies that Q(u0) is of the form ur0. �

Proof of Proposition 3.5. Let (R, δ), a, and the ui be as above. We need to show
that u2 = c(1 − a2) for some c ∈ k. By Lemma 3.7 we have that there is some
n ≥ 1, some r ≥ 0 and some polynomial P ∈ k[u0, . . . , un−1] such that

(3.5) un =
P (u0, . . . , un−1)

ur0
,
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for some polynomial P over k. Our first step is to show that n ≤ 2.
Let S := k[u0, . . . , un−1]⊗k k[u0, . . . , un−1]. Let

I := (u1, . . . , un−1)2k[u0, . . . , un−1]

and consider the ideal of S given by

J := I ⊗ k[u0, . . . , un−1] + k[u0, . . . , un−1]⊗ I.

So these are the elements of S in which each monomial has degree at least 2 in
either the variables u1 ⊗ 1, . . . , un−1 ⊗ 1, or in the variables 1 ⊗ u1, . . . , 1 ⊗ un−1.
Using Lemma 3.6 we can compute that for 1 ≤ i, j, ` ≤ n− 1

(3.6) ∆(uiuju`) ∈ J.

Moreover, for 1 ≤ i, j ≤ n− 1, Lemma 3.6 gives

(3.7) ∆(uiuj) = uj0ui ⊗ uj + ui0uj ⊗ ui mod J.

Now, write the polynomial P of equation (3.5) as

P = P0(u0) +

n−1∑
i=1

Pi(u0)ui +
∑

1≤i≤j≤n−1

Pi,j(u0)uiuj +H,

where H is of degree at least three in u1, . . . , un−1. Applying ∆ to both sides of
equation (3.5) we get (u0 ⊗ u0)r∆(un) = ∆(P ). We therefore have:

(3.8)

(u0 ⊗ u0)r∆(un) = P0(u0 ⊗ u0) +

n−1∑
i=1

Pi(u0 ⊗ u0)∆(ui) +∑
i≤j

Pi,j(u0 ⊗ u0)∆(uiuj) + ∆(H).

We claim that this forces Pi = 0 for all i = 1, . . . , n − 1. To prove this, note that
by Lemma 3.6 and equation (3.5), both sides of equation (3.8) are elements of the
polynomial ring k(u0⊗1, 1⊗u0)[u1⊗1, . . . , un−1⊗1, 1⊗u1, . . . , 1⊗un−1]. We first
compute, for both sides of (3.8), the coefficient of ui ⊗ 1. On the right-hand side,
using equations (3.6) and (3.7), the only term that contributes is Pi(u0⊗u0)∆(ui).
By Lemma 3.6, that contribution is Pi(u0 ⊗ u0). On the left-hand side, using

Lemma 3.6 and equation (3.5), the coefficient of ui⊗ 1 is (u0⊗u0)r
(
Pi(u0)

u−r0

⊗ 1

)
.

So Pi(u0) ⊗ ur0 = Pi(u0 ⊗ u0). This forces Pi = dur0 for some d ∈ k. On the
other hand, comparing the coefficient of 1 ⊗ ui on both sides of equation (3.8) we
have that ur+n0 ⊗ Pi(u0) = Pi(u0 ⊗ u0)(ui0 ⊗ 1). Plugging in Pi = dur0 we get that

d(ur+n0 ⊗ ur0) = d(ur+i0 ⊗ ur0). As i < n, this forces d = 0 and hence Pi = 0.
Equation (3.8) therefore becomes

(u0⊗u0)r∆(un) = P0(u0⊗u0)+
∑

1≤i≤j≤n−1

Pi,j(u0⊗u0)(uj0ui⊗uj+ui0uj⊗ui) mod J.

Assume towards a contradiction that n ≥ 3. Then by Lemma 3.6 we must have
u1⊗un−1 appearing in ∆(un) on the left with a nonzero coefficient. So P1,n−1 6= 0.
But then P1,n−1(u0 ⊗ u0)(u0un−1 ⊗ u1) appears on the right, while it does not
appear on the left since un−1 ⊗ u1 does not appear in ∆(un) by Lemma 3.6.
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This contradiction proves that n ≤ 2. Suppose n = 1. Then equation (3.5) says

u1 = P (u0)
ur
0

. Applying ∆ to both sides yields

P (u0)⊗ ur0 + ur+1
0 ⊗ P (u0) = P (u0 ⊗ u0)

which is only possible if P0 = 0. Hence u1 = u2 = 0, as desired.
So we are left to consider the case when n = 2. Equation (3.5) becomes

u2 =
1

ur0

M∑
j=0

Pj(u0)uj1

with M ≥ 1, the Pj are polynomials over k, and PM is nonzero. Multiplying by ar

(recall that u0 = a) and applying ∆ gives

(ar ⊗ ar)
(
u2 ⊗ 1 + a2 ⊗ u2

)
=

M∑
j=0

Pj(a⊗ a)(u1 ⊗ 1 + a⊗ u1)j

which we can write as M∑
j=0

Pj(a)uj1 ⊗ ar +

M∑
j=0

ar+2 ⊗ Pj(a)uj1

 =

M∑
j=0

Pj(a⊗ a)(u1 ⊗ 1 + a⊗ u1)j .

Notice that if M > 1 then the right-hand side involves terms with ui1 ⊗ u
j
1 with

i, j ≥ 1 while the left-hand side does not, and so we cannot have equality. Thus
M = 1. Writing out the above equation with this in mind we get that

P0(a)⊗ ar + P1(a)u1 ⊗ ar + ar+2 ⊗ P0(a) + ar+2 ⊗ P1(a)u1

is equal to
P0(a⊗ a) + P1(a⊗ a)(u1 ⊗ 1 + a⊗ u1).

We look at this as an equation in k[a ⊗ 1, 1 ⊗ a][u1 ⊗ 1, 1 ⊗ u1]. Then taking the
coefficient of u1 ⊗ 1 gives that

P1(a)⊗ ar = P1(a⊗ a),

which can only occur if P1 = dar for some d ∈ k. Then computing the coefficient
of 1⊗u1 gives ar+2⊗dar = d(ar+1⊗ar), and so d = 0. Hence P1 = 0. Now taking
the constant coefficient (regarding constants as being in k[a⊗ 1, 1⊗ a]) gives that

P0(a)⊗ ar + ar+2 ⊗ P0(a) = P0(a⊗ a).

Now write P0(t) =
∑L
j=0 pjt

j . Then we have

L∑
j=0

pj(a
j ⊗ ar + ar+2 ⊗ aj − aj ⊗ aj) = 0.

Notice that if j 6∈ {r, r + 2} then we have that the coefficient of aj ⊗ aj on the
left-hand side is equal to pj whereas the right-hand side is zero and so pj = 0. It
follows that P0(t) = prt

r + pr+2t
r+2. Then

0 =

L∑
j=0

pj(a
j ⊗ ar + ar+2 ⊗ aj − aj ⊗ aj) = pra

r+2 ⊗ ar + pr+2a
r+2 ⊗ ar.

This forces pr = pr+2 and so we see P0(t) = c(tr − tr+2) for some constant c ∈ k.
So u2 = 1

ur
0

(
P0(u0) + P1(u0)u1

)
= c(1− u2

0) = c(1− a2), as desired. �



D-GROUPS AND THE DIXMIER-MOEGLIN EQUIVALENCE 23

The following is a geometric interpretation of the proposition.

Proposition 3.8. Suppose k ⊆ Kδ and (G, s) is an affine connected a-twisted
D-group over k where a ∈ k[G] is group-like. Then

g 7−→

(
a(g) δa(g)

a(g)

0 1

)

defines a homomorphism π : G→ E where E ≤ GL2 is the algebraic subgroup made

up of matrices of the form

(
x y
0 1

)
. Moreover, there exists some c ∈ k such that

if (E, tc) is the a-twisted D-group from Example 3.4, then π : (G, s)→ (E, tc) is a
D-morphism.

Proof. Recall that as a ∈ k[G] is group-like, a : G → Gm is a homomorphism of
algebraic groups. It follows immediately that π is well-defined and does indeed map
G to E. We check that it is a group homomorphism: given g, h ∈ G, note first of
all that as ∆(a) = a⊗a and δ is an a-coderivation we have ∆(δa) = δa⊗a+a2⊗δa
and so

(3.9) δa(gh) = ∆(δa)(g, h) = δa(g)a(h) + a(g)2δa(h).

We can therefore compute

π(g)π(h) =

(
a(g) δa(g)

a(g)

0 1

)(
a(h) δa(h)

a(h)

0 1

)

=

(
a(gh) a(g) δa(h)

a(h) + δa(g)
a(g)

0 1

)

=

(
a(gh) a(g)2δa(h)+δa(g)a(h)

a(gh)

0 1

)

=

(
a(gh) δa(gh)

a(gh)

0 1

)
by (3.9)

= π(gh)

where we have used repeatedly that a(gh) = a(g)a(h). We note that we have not
up until this point used the parameter c ∈ k; the reason for this is that the groups
Ec are isomorphic as algebraic groups.

It remains to show that π is a D-morphism from (G, s) to some (E, tc). Let c be
as given by Proposition 3.5. It suffices to show that π takes D-points to D-points.

That is, if g ∈ (G, s)](K) then

(
a(g) δa(g)

a(g)

0 1

)
should be a D-point of (E, tc).
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Writing tc = (id, tc) we have that

tc

(
a(g) δa(g)

a(g)

0 1

)
=

(
δa(g) δa(g)2

2a(g)2 + c(1− a(g)2)

0 0

)
by Example 3.4

=

(
δa(g) a(g)δ2a(g)−δa(g)2−c(a(g)2−a(g)4)

a(g)2 + c(1− a(g)2)

0 0

)

= δ

(
a(g) δa(g)

a(g)

0 1

)
where the penultimate step follows from Proposition 3.5 telling us that aδ2a =
3
2 (δa)2 + c(a2− a4), and in the final equality we are using the fact that as g is a D-

point of G, δ(r(g)) = (δr)(g) for all r ∈ k[G]. This shows that π(g) ∈ (E, tc)
](K),

as desired. �

We can now complete the proof of the theorem.

Proof of Theorem 3.1. We have already established that (R, δ) is the co-ordinate
ring of an affine connected a-twisted D-group (G, s) where a ∈ k[G] is group-
like. Here recall that k ⊆ Kδ. By Proposition 2.3, it suffices to show that every
irreducible δ-rational D-subvariety of G over k is δ-locally-closed.

Let π : (G, s) → (E, tc) be the D-morphism from Proposition 3.8. We first
show that every fibre of this map has the property that all its D-subvarieties, over
arbitrary δ-field extensions, are compound isotrivial.

Let us start with the fibre above the identity, that is, H = ker(π). Since π is
a D-morphism, (H, s) is a D-subvariety of (G, s). Here, by abuse of notation, we
write (H, s) instead of (H, s �H). Since π is an algebraic group homomorphism H is
an algebraic subgroup of G. It follows that (H, s) is an a�H -twisted D-group also.
On the other hand, a�H = 1 by the definition of π. So (H, s) is an actual D-group.
By Proposition 2.16, every irreducible D-subvariety of H, over any δ-field extension
of k, is compound isotrivial.

What about other fibres of π over D-points of (E, tc)? Any such fibre is a D-
subvariety of (G, s) of the form Hg, for some g ∈ (G, s)](K). Since (G, s) is not
necessarily a D-group, the multiplication-by-g-on-the-right map, ρg : G→ G, is not
necessarily a D-automorphism. Nevertheless, when we restrict this map to H we
do get a D-isomorphism between H and Hg. To see this we need only check that
ρg takes D-points of H to D-points of Hg. Letting h ∈ (H, s)](K) we compute

s(hg) = s(h)g + a(h)hs(g) by (3.2)

= s(h)g + hs(g) as a�H = 1

= δ(h)g + hδ(g) as h and g are D-points

= δ(hg) as ∇ : G→ TG is a group homomorphism

as desired. So H and Hg are D-isomorphic over k(g). It follows that every fibre
of π above a D-point has the property that all its D-subvarieties, over arbitrary
δ-field extensions, are compound isotrivial.

Now suppose that V ⊆ G is an irreducible δ-rational D-subvariety over k. We
need to prove that it has a maximum proper D-subvariety over k. Let W ⊆ E be the
D-subvariety obtained by taking the Zariski closure of the image of V under π, and
consider the dominant D-morphism π�V : (V, s) → (W, tc). Since k(W ) ⊆ k(V ),
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W is also δ-rational. Since (E, tc) is of dimension two, it satisfies the δ-DME by
Proposition 2.5. Hence W has a maximum proper D-subvariety over k. Next, let η
be a k-generic D-point of W and consider the fibre Vη. Note that Vη is δ-rational
since k(η)(Vη) = k(V ). But Vη is a D-subvariety of the fibre of π : (G, s)→ (E, tc)
above the D-point η, and hence as we have argued above, is compound isotrivial.
So, by Proposition 2.13, Vη has a maximum proper D-suvariety over k(η). We
have shown that both the image and the generic fibre have maximum proper D-
subvarieties, and so by Lemma 2.6, (V, s) has a maximum proper D-subvariety
over k, as desired. �

Remark 3.9. In the end of above proof we could also have used the fact that
(E, tc), while not in general isotrivial, is compound isotrivial in two steps. This
was observed by Ruizhang Jin, in whose PhD thesis this example will be worked
out. In any case, using the compound isotriviality of (E, tc) the above arguments
actually give that every D-subvariety of (G, s) is compound isotrivial (in at most
five steps) from which it follows by Corollary 2.14 that (G, s) satisfies the δ-DME.

4. The DME for Ore extensions of commutative Hopf agebras

We will now apply the results of the previous sections to the classical study of
certain (noncommutative) Hopf agebras. Recall that if A is a noetherian associative
algebra over a field k of characteristic zero, then we say that the Dixmier-Moeglin
equivalence (DME) holds for A if for every (two-sided) prime ideal P of A, the
following are equivalent:

(i) P is primitive: it is the annhilator of a simple left A-module.
(ii) P is locally closed: the intersection of all the prime ideals of A that properly

contain P is a proper extension of P .
(iii) P is rational: the centre of the Goldie quotient ring2 Frac(A/P ) is an

algebraic field extension of k.

Of course, for commutative algebras the DME always holds as the notions of prim-
itive, locally closed and rational all coincide with maximal.

It is known that in any algebra that satisfies the Nullstellensatz locally closed
implies primitive and primitive implies rational, see [4, II.7.16]. Thus, the central
question is: when does rational imply locally closed? Certainly this is not always
the case; even in finite Gelfand-Kirillov dimension a counterexample was found
in [1]. In [2] the DME was conjectured specifically about all Hopf algebras of finite
Gelfand-Kirillov dimension.

We will show here that the DME holds for Hopf algebras that arise as certain
twisted polynomial rings over commutative Hopf algebras. Recall that if R is a k-
algebra equipped with an automorphism σ then a k-linear σ-derivation is a k-linear
map δ satisfying the twisted Leibniz rule:

δ(rs) = σ(r)δ(s) + δ(r)s.

Given σ and δ, the Ore extension of R, denoted by R[x;σ, δ] is the ring extension of
R with the property that it is a free left R-module with basis {xn : n ≥ 0} and such

2The Goldie quotient is an artinian ring of quotients for any prime noetherian ring that imitates
the field of fractions construction for integral domains in the commutative case. See [18, Chapter

2] for details.
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that xr = σ(r)x+ δ(r) for all r ∈ R. We aim to prove the DME for Hopf algebras
that arise as the Ore extensions of commutative Hopf algebras. More precisely,

Theorem 4.1. Suppose k is a field of characteristic zero and R is a commutative
affine Hopf k-algebra equipped with a k-algebra automorphism σ and a k-linear σ-
derivation δ. Assume that the Ore extension A := R[x;σ, δ] admits a Hopf algebra
structure extending that of R. Then A satisfies the DME.

This is Theorem B2 of the introduction. Its proof is preceded by a number of
preliminaries.

4.1. Hopf Ore extensions. In this section we prove a result (Corollary 4.4, below)
that severely restricts what (R,∆, σ, δ) can be if A = R[x;σ, δ] is to admit a Hopf
algebra structure extending that on R. Actually this was already done by Brown
et al. in [5], answering a question of Panov [20], in a more general context where
R is not necessarily commutative, but under the additional assumption on A that

(4.1) ∆(x) = a⊗ x+ x⊗ b+ v(x⊗ x) + w

for some a, b ∈ R and v, w ∈ R ⊗k R. When (4.1) holds, possibly after a change
of the variable x, Brown et al. call R[x;σ, δ] a Hopf Ore extension. They ask if
every Ore extension admitting a Hopf algebra structure extending that on R is a
Hopf Ore extension. We prove that this is the case, in a strong way, when R is
commutative and affine (this is Theorem C of the introduction):

Theorem 4.2. Suppose k is an algebraically closed field of characteristic zero and
R is a commutative affine Hopf k-algebra equipped with a k-algebra automorphism σ
and a k-linear σ-derivation δ. If R[x;σ, δ] admits a Hopf algebra structure extending
that of R then, after a linear change of the variable x,

∆(x) = a⊗ x+ x⊗ b+ w

for some a, b ∈ R, each of which is either 0 or group-like, and some w ∈ R⊗k R.

Proof. Our starting point is [5, §2.2, Lemma 1] which says that if R ⊗k R is a
domain (which is true here as R is a commutative domain and k is algebraically
closed) then

(4.2) ∆(x) = s(1⊗ x) + t(x⊗ 1) + v(x⊗ x) + w

where s, t, v, w ∈ R⊗kR. We let A = R[x;σ, δ] and let S denote the antipode of A.
By making a substitution x 7→ x− λ for some λ ∈ k, we may assume that ε(x) = 0
where ε : A→ k is the counit. This substitution does not change the form of ∆(x)
given in (4.2).

Our first goal is to show that v = 0. Recall that since R is commutative it is of
the form R = k[G] for a connected affine algebraic group G. We can therefore view
v ∈ R ⊗k R as a regular function on G × G. We show first that v(g−1, g) = 0 for
all g ∈ G, and then that in fact v = 0.

We now consider the antipode S. By [26, Corollary 1], S is bijective on A and
its restriction to R is bijective on R. Thus we can write

S(x) = a0 + a1x+ · · ·+ adx
d

for some d ≥ 1 and a0, . . . , ad ∈ R with ad 6= 0. Writing m : A ⊗k A → A for the
homomorphism induced by multiplication, we have the identity

m ◦ (S ⊗ id) ◦∆(x) = ε(x).
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So, as ε(x) = 0, we may let µ = m ◦ (S ⊗ id) and use (4.2) to write

0 = µ(s)x+ S(x)µ(t) + S(x)µ(v)x+ µ(w).

Notice that m ◦ (S ⊗ id)(R ⊗ R) ⊆ R and so if we look at the coefficient of xd+1

on the right-hand side, we see that it is adσ
d(µ(v)). Since R ⊗ R is a domain and

ad is nonzero and σ is an automorphism, we see that µ(v) = m ◦ (S ⊗ id)(v) = 0.
Geometrically, this means precisely that v(g−1, g) = 0 for all g ∈ G.

Next we apply coassociativity, which tells us that (∆⊗id)(∆(x)) = (id⊗∆)(∆(x))
in R ⊗k R ⊗k R = k[G × G × G]. Writing this out using (4.2), and equating the
coefficients of x⊗ x⊗ x, yields

(∆⊗ id)(v) · (v ⊗ 1) = (id⊗∆)(v) · (1⊗ v).

Evaluating at (g, h−1, h) for any fixed g, h ∈ G we get

v(gh−1, h)v(g, h−1) = v(g, 1G)v(h−1, h) = 0

where the final equality uses what we proved in the previous paragraph. Now, if
v 6= 0 then for a Zariski dense set of (g, h) ∈ G × G, v(g, h−1) 6= 0. But then for
each such (g, h) the above equation implies that v(gh−1, h) = 0. Hence, in fact,
v(gh−1, h) = 0 for all (g, h) ∈ G×G. As every element of G×G can be written in
the form (gh−1, h), we have shown that v = 0.

We have thus proven that

(4.3) ∆(x) = s(1⊗ x) + t(x⊗ 1) + w

for some s, t, w ∈ R⊗k R.
We claim now that either t = 0 or t = 1 ⊗ b for some group-like b ∈ R. We

again apply coassociativity to x, this time using (4.3) and equating the coefficients
of x⊗ 1⊗ 1, to get

(∆⊗ id)(t) · (t⊗ 1) = (id⊗∆)(t)

The geometric interpretation is that

(4.4) t(fg, h)t(f, g) = t(f, gh)

for all f, g, h ∈ G.
Suppose t(1G, g0) = 0 for some g0 ∈ G. We show in this case that t = 0. Indeed,

for all h ∈ G we have 0 = t(g0, h)t(1G, g0) = t(1G, g0h), by (4.4) with f = 1G.
Hence, t(1G, h) = 0 for all h ∈ G. But then, by (4.4) with f = g−1, we get
0 = t(1G, h) = t(g−1g, h)t(g−1, g) = t(g−1, gh) for all g, h ∈ G. As every element of
G×G is of the form (g−1, gh) for some g, h ∈ G, we have t = 0, as desired.

Suppose on the contrary that t(1G, g) 6= 0 for every g ∈ G. Then t(g, h) =
t(1G,gh)
t(1G,g)

is a never vanishing regular function on G × G, and hence t = λt′ where

λ ∈ k∗ and t′ : G × G → Gm is an algebraic group homomorphism (see [23,
Theorem 3]). So t′ = b′ ⊗ b where b′, b ∈ R are group-like. But then we have

λb′(g)b(h) = t(g, h) =
t(1G, gh)

t(1G, g)
=
λb(gh)

λb(g)
=
λb(g)b(h)

λb(g)

for all g, h ∈ G. It follows that b′ = λ = 1 and t = 1⊗ b, as desired.
A similar argument shows that in (4.3) either s = 0 or s = a ⊗ 1 for some

group-like a ∈ R. This proves the theorem. �
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Remark 4.3. It may be worth pointing out that our proof of Theorem 4.2 made no
use of δ. We used only the properties of a Hopf algebra extension and the fact that
σ is injective, as well as the fact that every element of A can be written as a left
polynomial in x over R.

Corollary 4.4. Suppose k is an algebraically closed field of characteristic zero and
R is a commutative affine Hopf k-algebra equipped with a k-algebra automorphism σ
and a k-linear σ-derivation δ. If R[x;σ, δ] admits a Hopf algebra structure extending
that of R then (R,∆, σ, δ) must satisfy the following two conditions.

(1) There exists w ∈ R⊗k R and a group-like a ∈ R such that, for all r ∈ R,

∆(δ(r)) =
∑

(δ(r1)⊗ r2 + ar1 ⊗ δ(r2)) + w
(
∆(r)−∆(σ(r))

)
(2) There is a character χ : R→ k such that for all r ∈ R,

σ(r) =
∑

χ(r1)r2 =
∑

r1χ(r2).

In the above we are using Sweedler notation, writing ∆(r) =
∑
r1⊗r2 for all r ∈ R.

Proof. Statements (1) and (2) are proven for Hopf Ore extensions in [5]. Indeed,
remembering that in our case R is commutative, statement (2) is just part (i)(c) of
the main theorem of [5] (see also Theorem 2.4(d) of [5]), and statement (1) is the
identity labelled (21) in [5] which is asserted in part (i)(d) of the main theorem. So
to prove the corollary it suffices to show that A = R[x;σ, δ] is a Hopf Ore extension,
that is, after a change of variable ∆(x) has the form (4.1) discussed above. But
Theorem 4.2 gives us an even stronger form for ∆(x). �

Remark 4.5. The main theorem of [5] also includes a converse; namely, assuming
that (R,∆, σ, δ) satisfies (1) and (2), with w ∈ R⊗kR satisfying two other identities,
one can always extend in a natural way the Hopf algebra structure from R to
R[x;σ, δ]. This gives many examples to which our Theorem 4.1 will apply.

4.2. The case when σ is the identity. When σ = id note that a σ-derivation is
just a derivation. In this case we write the Ore extension as R[x; δ]; it is the skew
polynomial ring in x over R where xr = rx + δ(r) for all r ∈ R. Statement (1)
of Corollary 4.4 now says that if R[x; δ] admits a Hopf algebra structure extending
that on R, then δ must have been an a-coderivation on R. So Theorem 3.1 applies
and we have that (R, δ) satisifes the δ-DME. The following proposition relates the
δ-DME for (R, δ) to the DME for R[x; δ].

Proposition 4.6. Suppose k is a field of characteristic zero and R is a commutative
affine k-algebra equipped with a k-linear derivation δ. If the δ-rational prime δ-
ideals of (R, δ) are δ-locally-closed, then the rational prime ideals of R[x; δ] are
locally closed.

In particular if the δ-DME holds for (R, δ) then the DME holds for R[x; δ].

Proof. Suppose P is a rational prime ideal of R[x; δ]. Let I := P ∩ R. Then I is
a prime ideal of R (see [7, Corollary to Lemma 2]). Moreover, I is a δ-ideal since
if a ∈ P ∩ R then δ(a) = [x, a] ∈ P ∩ R. It follows easily that J := IR[x; δ] is
an ideal of R[x; δ] that is contained in P and that R[x; δ]/J ∼= (R/I)[x; δ] where
we use δ to denote the induced derivation on S := R/I. Let F = Frac(S) be
the field of fractions of S and extend δ to F . We claim that the δ-constants of
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F are all algebraic over k. Indeed, note that if f ∈ F with δ(f) = 0 then f is a

central element of F [x; δ]. We let P̃ denote the prime ideal in S[x; δ] corresponding
to P under the isomorphism R[x; δ]/J ∼= S[x; δ]. As P ∩ R = I, we have that

P̃ ∩ S = 0, so that P̃ lifts to a prime ideal P0 of F [x; δ]. The image of f in
B := F [x; δ]/P0 is again a central element of B. By construction B is a localization

of S[x; δ]/P̃ ∼= R[x; δ]/P and thus passing to the full localization gives that f is a
central element of Frac(R[x; δ]/P ). As P is rational f must be algebraic over k.

We have shown that the prime δ-ideal I is δ-rational. By assumption it is
therefore δ-locally-closed. Consequently, there is some g ∈ R \ I such that every
prime δ-ideal of R properly containing I must contain g.

In order to prove that P is locally closed it now suffices to show that whenever
Q ) P is prime then Q ∩ R ) P ∩ R = I. Indeed, if this is the case, then we

have that g ∈
⋂
{Q ∩ R : Q ) P prime}. Since g /∈ P , we have in particular that⋂

{Q : Q ) P prime} 6= P . That is, P is locally closed.

Towards a contradiction therefore, let us assume that there exists a prime ideal
Q ) P with Q ∩ R = P ∩ R = I. It follows that F [x; δ] is not simple: under

the isomorphism R[x; δ]/J ∼= S[x; δ], Q corresponds to a nonzero prime ideal Q̃

in S[x; δ] whose intersection with S = R/I is trivial, so that Q̃ lifts to a nonzero
prime ideal Q0 in F [x; δ]. On the other hand, it is well-known that, as F is a field
of characteristic zero, if δ is nontrivial on F then F [x; δ] is a simple ring (indeed
this is a consequence of the fact that F [x; δ] is a left and right PID, see [25, §2.1]).

Thus, δ is trivial on F and so F [x; δ] = F [x] is a PID. So P0, the lift of P̃ from
S[x; δ] to F [x; δ], as it is properly contained in Q0, must be 0. That is, F [x; δ]
is a localisation of R[x; δ]/P . Hence, Frac

(
R[x; δ]/P

)
= F (x), contradicting the

rationality of P .
For the “in particular” clause, note that R[x; δ] satisfies the Nullstellensatz –

by [12, Theorem 2] for example – and hence we already know that local-closedness
implies primitivity and primitivity implies rationality. �

Corollary 4.7. Suppose k is an algebraically closed field of characteristic zero and
R is a commutative affine Hopf k-algebra equipped with a k-linear derivation δ that
is also an a-coderivation for some group-like a ∈ R. Then R[x; δ] satisfies the DME.

Proof. Theorem 3.1 together with Proposition 4.6. �

A special case of Corollary 4.7 is when R is a differential Hopf k-algebra – this
yields Theorem B1 of the introduction. But the DME for R[x; δ] in that case is
easier: one uses only Theorem 2.20 and the material in Section 3 is not necessary.

4.3. The case when δ is inner. If σ is an automorphism of R, and a ∈ R, then
the map r 7→ a(r − σ(r)) is a σ-derivation on R. Such σ-derivations are called
inner. Here is a sufficient criterion for a σ-derivation δ being inner.3

Lemma 4.8. Suppose R is a commutative ring with an automorphism σ and a
σ-derivation δ. Suppose there exists an element f ∈ R such that f −σ(f) is a unit.
Then δ is inner.

Proof. It is easy to see, using the commutativity of R, that a := δ(f)
f−σ(f) witnesses

the inner-ness of (R, σ, δ). �

3For a more general statement in the noncommutative case, see [9, Lemma 2.4(b)].
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When δ is inner the Dixmier-Moeglin equivalence for R[x;σ, δ] follows easily from
known results. It makes use however of one more notion:

Definition 4.9. Let A be a finitely generated algebra over a field k. We say that
a k-vector subspace V of A is a frame for A if V is finite-dimensional, contains 1A,
and generates A as a k-algebra.

Lemma 4.10. Suppose R is a commutative affine Hopf algebra over a field k of
characteristic zero and σ is a k-algebra automorphism of R satisfying statement (2)
of Corollary 4.4. Then there there is a frame for R such that σ(V ) = V .

Proof. Suppose R = k[G] where G is an affine algebraic group. Then G is linear
and hence we may embed G into GLn. This gives us a frame V of R spanned by the
restriction toG of 1, the coordinate functions xi,j , and 1

det . Now, ∆(xi,j) =
∑
xi,k⊗

xk,j and ∆( 1
det ) = 1

det ⊗
1

det . So ∆(V ) ⊆ V ⊗ V . Statement (2) of Corollary 4.4

then implies that σ(V ) ⊆ V , and hence by finite-dimensionality σ(V ) = V .4 �

Proposition 4.11. Suppose k is an uncountable algebraically closed field of char-
acteristic zero, R is a finitely generated commutative k-algebra, σ is a k-algebra
automorphism of R that preserves a frame, and δ is an inner σ-derivation on R.
Then R[x;σ, δ] satisfies the DME.

Proof. When δ = 0 this is [3, Theorem 1.6]; while the theorem there is stated for
k = C it holds for any uncountable algebraically closed field. But if a ∈ R is such
that δ(r) = a(r − σ(r)) for all r ∈ R, then R[x;σ, δ] = R[t;σ, 0] where t := x − a.
Indeed,

tr = (x− a)r

= σ(r)x+ δ(r)− ar
= σ(r)x− aσ(r)

= σ(r)t

for all r ∈ R, and {tn : n ≥ 0} can be seen to be another left R-basis for R[x;σ, δ]
using the fact that, for any polynomial P , P (t) is equal to P (x) plus terms of
strictly lower degree. So the inner case reduces to the case when δ = 0. �

4.4. The general case. Let us fix from now on a field k of characteristic zero.
Our proof of Theorem 4.1 will go via reducing either to the case when σ = id or
when δ is inner. But it will require some preparatory lemmas. First, let us point
out that statement (2) of Corollary 4.4 forces (R, σ) to be of a very restricted form.

Lemma 4.12. Let G be a connected affine algebraic group over k and τ : G → G
an automorphism of G over k. Let R = k[G], and σ = τ∗ the corresponding k-
algebra automorphism of R. If (R, σ) satisfies statement (2) of Corollary 4.4 then
τ : G→ G is translation by some central element of G(k).

4As a referee pointed out to us, the existence of a frame V with ∆(V ) ⊆ V ⊗V can be deduced
for arbitrary finitely generated Hopf algebras by starting with any frame W and extending it to a

finite-dimensional subcoalgebra V by the Finiteness Theorem for Coalgebras [19, Theorem 5.1.1].
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Proof. Since χ : R → k is a homomorphism there is some c ∈ G(k) such that
χ(f) = f(c) for all f ∈ R. If we write ∆(f) =

∑
f1⊗f2, then by the definition of the

coproduct on R we have f(ab) =
∑
f1(a)f2(b) for all a, b ∈ G. Now, property (2)

gives us that for all a ∈ G, σ(f)(a) =
∑
χ(f1)f2(a) =

∑
f1(c)f2(a) = f(ca). The

other half of the equality in (2) gives σ(f)(a) = f(ac). So f(ca) = f(ac) for all
f ∈ R, and hence c is central in G. On the other hand, f(ca) = σ(f)(a) = f(τa)
for all f ∈ R, so τ is translation by c. �

We will make use of the following notion.

Definition 4.13. Suppose σ is an automorphism of a commutative ring R. By a
σ-prime ideal is meant a σ-ideal I such that whenever J and K are σ-ideals with
JK ⊆ I then either J ⊆ I or K ⊆ I.

Note that a σ-prime ideal need not be prime. But, at least in the case when R is
a commutative noetherian ring, a σ-prime ideal is radical; this follows from the fact
that the nilpotent radical of I is a σ-ideal and some power of it is contained in I.
We will sometimes need to quotient out by σ-prime ideals that we do not know are
prime, which means we will have to work with reduced difference rings that are not
necessarily integral domains. The following lemma about such difference rings will
be very useful.

Lemma 4.14. Suppose R is a commutative ring endowed with an automorphism
σ such that (0) is σ-prime. If 0 6= f ∈ R satisfies σ(f) ∈ Rf then f is not a zero
divisor in R.

Proof. Let J = Rf . Then J is a σ-ideal of R. It follows that K := {r ∈ R : rf = 0}
is also a σ-ideal of R. Then by construction JK = (0). Since (0) is σ-prime and J
is nonzero, we see that K = (0) and so we obtain the desired result. �

Finally, we will make use of the following fundamental result on Ore extensions
of commutative noetherian rings.

Fact 4.15 (Goodearl [9]). Suppose R is a commutative noetherian ring, σ is an
automorphism of R, and δ is a σ-derivation. Suppose P is a prime ideal of the Ore
extension R[x;σ, δ], and let I = P ∩R. Then one of the following three statements
must hold:

I. R[x;σ, δ]/P is commutative.
II. I is a (σ, δ)-ideal of R – that is, I is preserved under σ and δ – and there

is a prime ideal I ′ of R containing I such that σ(r)− r ∈ I ′ for all r ∈ R.
III. I is a σ-prime (σ, δ)-ideal of R and IR[x;σ, δ] is a prime ideal of R[x;σ, δ].

We can now prove the theorem.

Proof of Theorem 4.1. We have that R is a commutative affine Hopf k-algebra
equipped with a k-algebra automorphism σ and a k-linear σ-derivation δ, and that
the Ore extension A := R[x;σ, δ] admits a Hopf algebra structure extending that
of R. We wish to show that A satisfies the DME. By [12, Theorem 2] we have
that A satisfies the Nullstellensatz, and so it suffices to prove that if P is a rational
prime ideal of A then P is locally closed.

We first reduce to the case when k is algebraically closed. Since R = k[G] where
G is an affine algebraic group, and hence smooth, R is integrally closed. Let F
denote the field of fractions of R and let F0 := kalg∩F . Since R is integrally closed,
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F0 ⊆ R. Since F is a finitely generated extension of k, F0 is a finite extension of k.
Let R′ := R⊗F0 k

alg. Since F0 is relatively algebraically closed in F , we see that R′

is again an integral domain. Thus R′ is a commutative affine Hopf kalg-algebra to
which we extend σ and δ by kalg-linearity. Suppose we have proven the DME for
R′[x;σ, δ]. Then Irving-Small reduction techniques (see Irving-Small [13] and also
Rowen [24, Theorem 8.4.27]) give that A = R[x;σ, δ] satisfies the DME over F0.
But since F0 is a finite extension of k, we get the DME over k also.

Next we reduce to the case when k is uncountable (in order to be able to use
Proposition 4.11). Let L be an uncountable algebraically closed extension of k.
Then since k is algebraically closed we see that R ⊗k L is a commutative affine
Hopf L-algebra to which we extend σ and δ by L-linearity, and B := A ⊗k L ∼=
(R ⊗k L)[x;σ, δ]. Assume the DME holds for B. Let P be a rational prime ideal
of A and let Q = P ⊗k L. Since k is algebraically closed, Q is a prime ideal of B.
Since P is rational and B/Q = (A/P )⊗k L, we see that Q is a rational. Hence Q is
locally closed. Since the primes in A containing P lift to primes in B containing Q,
it follows that P is locally closed in A. So A satisfies the DME.

We may therefore assume that k is uncountable and algebraically closed.
If σ = id then δ is a k-linear derivation on R and statement (1) of Corollary 4.4

tells us that it is also an a-coderivation on for some group-like a ∈ R. It follows by
Corollary 4.7 that A = R[x; δ] satisfies the DME. So we may assume σ 6= id.

We may also assume that A/P is not commutative. Indeed, if it were, as P is
rational, we would have that Frac(A/P ) ⊆ k, so that P is a maximal ideal and
hence locally closed.

Write R = k[G] where G is a connected affine algebraic group over k. By
Lemma 4.12 we know that σ = τ∗ where τ : G → G is translation by a central
(non-identity) element c ∈ G(k).

Our next goal is to reduce to the case that P ∩R = (0), though in order to obtain
this we will have to give up on R being an integral domain. Let I = R∩P . We have
already ruled out case (I) of Fact 4.15. On the other hand, case (II) cannot hold:
σ would induce the identity map on R/I ′, implying that τ is the identity on V (I ′),
which contradicts the fact that it is translation on G by a non-identity element.
Hence case (III) holds; I is a σ-prime (σ, δ)-ideal of R and J := IA is a prime
ideal of A. Consider now the reduced quotient ring R := R/I with the induced
automorphism which we continue to denote by σ, and the induced σ-derivation
which we continue to denote by δ. Let A = A/J ∼= R[x;σ, δ] and P the image of P
in A. Since J is contained in P , P is rational in A and it suffices to show that P
is locally closed in A. Note that we have achieved P ∩R = (0).

Next, we claim that there is some non zero-divisor f ∈ R such that (σ, δ) extends

to R̃ := R[1/f ] and δ is inner on R̃. To see this, consider the frame V for R, given
by Lemma 4.10, that is preserved by σ. The image V of V in R is then a frame for
R that is also preserved by σ. Using k = kalg, let f be an eigenvector for the action
of σ on V , say σ(f) = λf for some λ ∈ k∗. By Lemma 4.14, f is not a zero divisor.
Moreover, the multiplicatively closed subset {1, f, f2, . . .} of R is preserved by σ,
and hence by [9, Lemma 1.3], (σ, δ) extends uniquely to the localisation at this set,

namely to R̃ := R[1/f ]. It remains to show that f can be chosen so that δ is inner

on R̃. If the eigenvalue λ is not equal to 1, then f −σ(f) = (1−λ)f is a unit in R̃,
and we get δ inner by Lemma 4.8. So suppose that 1 is the only eigenvalue for σ
on V . Note that σ is not the identity operator on R because τ is not the identity
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on V (I). Since V generates R as a k-algebra, σ is not the identity on V either.
Hence there must be some Jordan block that is of size greater than one, but with
eigenvalue 1. So we can choose the eigenvector f in such a way that there exists

nonzero g ∈ V with σ(g) = g + f . Hence g − σ(g) is a unit in R̃ = R[1/f ], and so

by Lemma 4.8 again, δ is inner on R̃.
To prove that P is locally closed let us consider the following partition of the set

of prime ideals of A that properly extend P .

S1 := {Q ) P : Q prime, and no power of f is in Q}
S2 := {Q ) P : Q prime, not in S1, and Q ∩R is a σ-prime (σ, δ)-ideal}
S3 := {Q ) P : Q prime, and not in S1 or S2}

It suffices to show that for each of i = 1, 2, 3,
⋂
Si 6= P .

For i = 2, note that as σ-prime implies radical, we have that f ∈ Q for all
Q ∈ S2, but f /∈ P as P ∩R = (0).

For i = 3, applying Fact 4.15 to Q ∈ S3, we have that either A/Q is commutative
or there is in R = R/I a prime ideal I := I ′/I extending Q∩R, and such that σ is
the identity on R/I = R/I ′. The latter case is impossible using again that σ = τ∗

and τ is translation on G by a non-identity element. So A/Q is commutative for
all Q ∈ S3. As A/P = A/P is not commutative there exist a, b ∈ A such that
g := [a, b] /∈ P . But g ∈ Q for all Q ∈ S3.

It remains therefore to consider S1. Let

Ã = R̃[x;σ, δ] = R[
1

f
][x;σ, δ].

As δ is inner on R̃, Proposition 4.11 tells us that Ã satisfies the Dixmier-Moeglin
equivalence. As P ∩ R = (0), we know that no power of f is in P , and hence

P̃ := PÃ is a prime ideal. As Ã is a localisation of A we have that P̃ is rational,

and hence locally closed. If Q ∈ S1 then QÃ is a prime ideal properly extending P̃ .

So there is α ∈ Ã \ P̃ such that α ∈ QÃ for all Q ∈ S1. For some n ≥ 0, fnα ∈ A.

So fnα ∈ QÃ ∩A = Q. But fnα /∈ P . So
⋂
S1 6= P , as desired. �
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