Abstract
Green microalgae are important sources of natural products and are attractive cell factories for manufacturing high-value products such as recombinant proteins. Increasing scales of production must address the bottleneck of providing sufficient light energy for photosynthesis. Enhancing the photosynthetic action spectrum of green algae to improve the utilisation of yellow light would provide additional light energy for photosynthesis. Here, we evaluated the Katushka fluorescent protein, which converts yellow photons to red photons, to drive photosynthesis and growth when expressed in Chlamydomonas reinhardtii chloroplasts. Transplastomic algae expressing a codon optimised Katushka gene accumulated the active Katushka protein, which was detected by excitation with yellow light. Removal of chlorophyll from cells, which captures red photons, led to increased Katushka fluorescence. In yellow light, emission of red photons by fluorescent Katushka increased oxygen evolution and photosynthetic growth. Utilisation of yellow photons increased photosynthetic growth of transplastomic cells expressing Katushka in light deficient in red photons. These results showed that Katushka was a simple and effective yellow light-capturing device that enhanced the photosynthetic action spectrum of C. reinhardtii.
Original language | English |
---|---|
Article number | 1770 |
Pages (from-to) | 1-15 |
Number of pages | 15 |
Journal | Microorganisms |
Volume | 10 |
Early online date | 27 Aug 2022 |
DOIs | |
Publication status | Published - 1 Sept 2022 |
Keywords
- chloroplast transformation; expanding photosynthetic action spectrum; green microalga; Katushka fluorescent protein; photosynthetically active radiation; PAR